
ULBS_05: Process-oriented topics: Modelling and simulation-based design 

and optimization of manufacturing systems and processes on the ADOxx 

platform 
 

Training goals  

The participants to this the training will  

▪ Understand and apply methods for the design of manufacturing systems and processes; 
▪ Understand and apply methods for the optimization of manufacturing systems operation; 
▪ Acquire operational skills on the use of ADOxx toolkits for domain specific metamodeling; 
▪ Acquire operational skills on the use of ADOxx toolkits for manufacturing systems modelling and simulation. 

Method 

▪ Case studies; 
▪ Metamodeling stage – the participants define together a Domain Specific Language optimally describing the domain of the 

studied cases. On its bases, they build the modelling and simulation tools; 
▪ Modelling stage – grouped in team the participants compete in solving manufacturing systems design problem. They must 

design a system producing a given product assortment;   
▪ Simulation stage – grouped in teams, the participants compete in solving manufacturing system optimization problems. They 

must find the best schedule for a given product assortment. 

 

 

 

 



 Unit 1 Introduction to Manufacturing Systems and ADOxx 

This unit will refresh the knowledge of the participants related to the following topics: 

• manufacturing system 

• modelling and simulation 

Manufacturing systems [Basnet1994]   

A manufacturing system is an ensemble of humans and machines that interact in order to transform raw materials in finite products.  

Automation groups the techniques by which the human contribution to the command and control of a process is reduced or eliminated. 

The goal of the process control is to maintain the values of the process outputs in the close vicinity of a set of given values (reference 

values). 

Automated manufacturing system (AMS) are manufacturing systems that can handle the manufacturing of a finite products with little 

or no human contribution. This include the transport of material from a workstation to other, the control of each workstation, the 

synchronization of workstations, the inspection of materials and redirection of nonconforming products. 

Flexible manufacturing system (FMS) are manufacturing systems able to reconfigure themselves very rapidly in order to produce 

multiple types of products. A FMS consist of:  

• a set of workstations capable each of automatically executing a larger set of operations so that machine flexibility is provided. 

This assures that the system can absorb large-scale changes in volume, capacity, or capability demands. 

• an material handling system based on flexible conveyors, automated guided vehicles (AGV) and loading-unloading robots that 

facilitate the transfer of material and tools from one workstation to other. This must provide routing flexibility which is the 

system's ability to be changed to produce new product types, and to change the order of operations executed on a part.  

• a complex command and control system that orchestrates the cooperation of the before mentioned systems.  

 

 

 



Modelling and simulation 

Modelling is the activity of model building. A model is an abstracted and simplified representation of a part of the reality, This mental 

construct allows the reasoning about the represented reality. In the context of this training a systemic view. Constructing a model consist 

in identifying the states, inputs and outputs that characterize it, and determining the relations that quantify the dependence of the states 

and outputs from the inputs. In order to handle complex systems, the hierarchical decomposition in a collection of interacting subsystems 

is also used. 

Once the model is defined, simulation is the method used to determine the possible evolution of the modeled system starting from a 

given state. It consists in substituting the values for the starting states and inputs in the model relations and calculating the following 

states and corresponding outputs. The user, their context – to which modelling library they have access or are loaded by default for 

example, and the access right ate managed from  access rights  

Presentation of the ADOxx platform 

The ADOxx is a software engineering environment that allows the development of modelling tools. The tools allows the collaborative 

development and the sharing of the digital artefacts(model and metamodels) by using a  multiuser database as the storage backend. As a 

result an acces control system is implemented and login with user and password is needed.    

 The two main applications of the environment that will be presented in this tutorial are: 

1) the ADOxx Development Toolkit – this allows the effective development of the modelling tool in form of a library. This tool is 

also used to manage the user, their context (what modelling library they use by default for example) and their rights.  

 

2) the ADOxx Modelling Toolkit – this allows the creation, editing and simulation(animation) of the models with the use of the 

library created in the          

Discussing the workflow metamodeling/modelling/simulation 

The following use cases for the ADOxx ecosystem will be presented in this training: 

1) Metamodeling – for the development of an Domain Specific Modelling Language (DSML) and of the supporting tools for editing 

abd simulating DSML models  



This workflow will be presented in Unit 2. This is an activity that can be organized with computer and manufacturing engineering 

trainees in separate or mixed teams.  The workflow comprises two steps 

1.1) meta-model design it consists in identifying the basic components classes – the classes of basic building blocks from 

which any model in the domain will be built. For each component class there must be defined: 

• the attributes; the values of this attributes describe the state of the component. The state of the model will be 

described by the ensemble of the values of the attributes of all components 

• the possible relations between instances of component classes  

• the behavior – how the state of the system is changing as a result of internal and external changes. Practically this 

means how the value of the attributes change. This allow the simulation of the model 

• the graphical representation of both components and relations-this is linked to the values of the attributes 

• the animation – this is the visual representation of the state change. To each possible transition between the model 

states a corresponding change in the graphical representation is associated   

This can be performed with the help of any tool that allows schematic metamodel description from simple diagram 

drawing application or mind mapping tools to more sophisticated tools like for example CoChaCo4ADOxx metamodeling 

tool.     

This is a mixed activity implying both manufacturing engineers that should bring domain specific knowledge and 

computer scientist which should bring this knowledge in a form  usable in the next step.   

1.2) meta-model implementation in ADOxx. This is performed with the help of the ADOxx Development Toolkit. Its usually 

a longer activity so it can be performed during one training session and will be scheduled as a unsupervised independent 

task for a team of trainees whit competencies in computer science taking part in the training.         

 

2) Modelling and simulation on the ADOxx platform  

This activity uses a library implementing a DSML developed using the workflow 1). This library is associated to the user 

environment by the system administrator using the Development Toolkit. At the login, the library is automatically loaded so that 

the user can start using it without other actions. The available DSML are visible in the Models pan where the user can select 

the type of the new model he wants to create. The user can perform two types of activities 

- visual editing – it can compose the model from visual building block representing components and relations presented 

in a toolbar. The models can be built from scratch or by modifying pre-existing models. The models can be saved in 

the intern format for later editing or simulation or exported in XML format for import in other tools. 



- simulation – the model is animated by performing step wise the state transition possible. This implies the updating of 

the attributes values and performing the corresponding changes in the model visual representation.     

-  

3) Modeling and simulation using the stand-alone program BeeUp       

Bee-Up is an application developed with the ADOxx environment. It is a single user (no login) standalone simplified version of the 

ADOxx Modelling Toolkit. It contains he metamodels for 5 largely used modeling languages: Event Driven Process Chain (EPC), 

Business Process Modelling Notation (BPMN), Entity Relation (ER), Petri Net (PN) and Unified Modelling Language (UML) preloaded. 

So the user can visually edit models in this 5 language but cannot add supplementary modelling languages. 

 The Petri nets are modelling formalism of particularly interest for the modelling of the manufacturing system because they are well 

suited to capture the discrete event and concurrent character of such systems. We will provide a short introduction to this formalism in 

the following. 

Modelling and simulation with Petri net  

In the second part the Petri net modeling theory, language and graphical notation is presented. The tools used for model development, 

for the simulation of the models and for the formal, qualitative and quantitative analysis of the systems are also presented.  

Petri net theory was originally developed by Carl Adam Petri and presented in his Ph.D [Petri1973]. The common definition of PNs 
introduced by Petri is as follows. A Petri net or place/transition net can be defined as a five-tuple; PN = (P, T, I, O, Mo) (1) Where: 

- P and T are a finite non-empty sets of places pictured through circles and transitions pictured through rectangles, respectively. P and 
T are disjoint sets, and P ∪ T are called nodes with P ∪ T ≠ ∅ and P ∩ T = ∅ 

- I and O are input and output functions that defines the set of directed arcs from T to P.  More obvious, the input and output functions 

of Petri net can be represented by arcs with arrows between two different types of nodes. 
- M: P → N, is a marking whose ith component represents the number of tokens in the ith place Pi.. The initial marking of the net is 

denoted by The Petri nets are assumed to be connected; it means that there is at least one path between any two nodes.  

The state of the modelled system at any moment is described by the marking of net. Each transition changes the state of the systems by 

moving the tokens from some places to other places and so changing the marking.    

The modeling using Petri consist in drawing the net by placing places and transitions and connecting them with arcs. 



For the simulation, an initial marking is needed describing the initial state of the system. The simulation can be performed step by 
step with user contribution or automatically. In the step-by-step simulation the application will signal the transition that are ready to 
fire (in red with “fire” label on them). The user clicks on them and as a result the tokens from the preplace of the transitions are 
transported in the post places of the transitions. In case of competing transitions (transition sharing preplaces), the user choses which 
transition to fire. In case of the automatically simulation al transition activated at some steps are fired. In case of competing transition 
if rules are specified (priority or probability) these rules are applied. If no rule is specified one transition from the competing set is 
chosen randomly. The result of the simulation is plotted usually as number of tokens in each place vs steps.      

We propose following problem to be modeled and simulated using the Bee-Up application  

  

 

A classical problem in the study of concurrent system is the philosophe’s 
dinner. 

Figure 1.1 depicts an instance of this problem. Four philosophers take a 
common dinner at a round table. They are eating rice with sticks. The problem 
is they have only 4 sticks. To eat each philosophe needs 2 sticks so he can do 
two things: eat if both the left and right sticks are available or talk if not both 
sticks are available. 

The problem can be extended to n philosophy and n sticks. 

 

 

Figure 1.1 The philosophers taking dinner                                 

  

 

 



 

 Figure 1.2 presents the corresponding Petri net that 
models the system. 

The behavior of each philosopher (f1- f4) is modeled 
by a net formed from two places – one representing 
the philosopher   the eating (fie) and other the 
philosopher talking (fit) and two transition which 
allows the change from one state to other. One token 
representing the philosopher marks the state in 
which he currently is. 

The sticks are represented as token that mark the 
stick places (s1-s4) when the sticks are not used. The 
sticks in use are not visible in the net. The arcs are 
connecting the transition with the pre and post 
places according to the precondition and the effects. 
The philosopher can transition from eating to talking 
and back. The sticks are be taken when the 
philosopher is transitioning to eating and put back 
when it transitions to talking. To eat the philosopher 
needs both sticks. 

The trainees should simulate the net and identify 
many situations specific to concurrent systems 
including deadlocks. 

 

Figure 1.2 The Petri net modelling the philosopher’s dinner 

 



Unit 2 Metamodeling 

Using the example provided below design and implement a Domain Specific Modelling Language for the modelling of manufacturing 

systems.  

The manufacturing system presented in figure 1.1 is producing chocolate truffles packaged in aluminum foil bags that are inserted in 

cardboard boxes. 

  

Figure 1.1 3D representation of a chocolate producing manufacturing line  



The line has the following components:   

-   an AGV transports the buckets with chocolate ganache mass from the storage area to the loading buffer of the truffle forming 
machine; 

-   an AGV transports the cardboard packaging material from the storage area to the loading buffer of the box forming machine; 

-   On the first line, the chocolate ganache mass is fed from the loading buffer in the tank of the truffle forming machine; inside 
the machine the chocolate is melted and chocolate truffles are formed. The truffles are loaded on a transport belt which 
functions as a buffer for the transport line with freezing areas. The chocolate truffles are transferred on the transport line 
where they are cooled to solidify and preserve the shape and then loaded in the buffer of the aluminum foil packaging 
machine. Two processes occur here: the formation of the bags from the aluminum foil taken from a roll and the filling of the 
aluminum bags with chocolate truffles. The resulted aluminum bags filled with chocolate truffles are buffered in a dispenser; 

-   On the second line, cardboard packaging material from the loading buffer, is transformed by the box forming machine in cubic 
cardboard boxes. The boxes are loaded in the machine output buffer; 

-   On the assembly line, a robotic arm transfers alternatively the aluminum bags and the cardboard boxes on the feeding 
transport belts which function as a buffer for the final packaging machine. The packaging machine has a robotic arm with flex 
gripper that introduces the aluminum bags with truffles in the cardboard boxes. The final product - cardboard boxes having 
aluminum bags with truffles - is discharged in a storage buffer from which it is then later transported to the finite product 
storage area 

 

The methodology for the definition and implementation of a domain specific language in ADOxx 

Defining the elements of the metamodeling language 

Therefore, the atomic concepts of the language will be Buffers, Workstations, Transport Machines and Ports, which will be represented 

graphically as the nodes of a graph, and the relations between them will be represented by the arcs of the graph. 

Buffers are temporary warehouses in the manufacturing flow and are characterized by the type of material they can store, by the 

maximum amount of materials they can store and by the amount stored at a time. These features will be syntactically denoted by 



attribute names. Buffers are components that store material without transforming it, so it must have all material ports of the same 

type. The maximum buffer capacity is fixed and cannot be extended (constant attribute). Their variable attribute is the current content, 

which can vary between 0 and the maximum capacity. The buffer cannot be loaded above the maximum capacity and cannot be 

unloaded if it is empty. Buffers are passive components, they are filled and emptied by other components with which they are 

connected. 

Workstations are the components that perform the operations of assembling, subassemblies or transforming some material entities 

into other material entities. These concepts are components in the manufacturing flow characterized by the types and quantities of 

input material and by the types and quantities of output materials for each operation that can be performed in that workstation. 

Workstations are components that transform materials. So, they must have at least one input and one output port of different types. 

They must allow the definition of operations that describe how many units of which materials are needed and which number of units 

based on which materials are produced through this operation. 

Transport machines are components of the manufacturing flow that transport material entities between workstations, in principle 

from one buffer to another. These concepts are components in the manufacturing flow characterized by the types and quantities of 

materials that can be transported from one buffer to another. 

Transport machines are components that transfer material without transforming it. They only change the position of material from the 

input buffer to the output buffer. So, they will have at least one material input port and output port for each material that is transported 

and the mass balance must be respected on the same material – number of entering units = number of exiting units. 

The conveyers transport only one material so all ports are of the same type and the defining characteristics is the throughput – number 

of material units transported in the time unit. 

The automated guided vehicle (AGV) is practically a mobile buffer. It has all attributes and behavior of a buffer, but it can connect and 

disconnect its ports from the corresponding ports of buffers and can move between preprogramed positions.  Also, it is an “active” 

component, initiating the loading unloading actions as soon as it is docked on buffer. So, all considerations concerning the interaction 

between buffers and components apply here. 



The manipulator is a flexible transporter that can transfer multiple types of materials between different in and out ports of the same 

type.  The most usual example is a manipulator that can handle different types of material moving them between different sub lines.  

There must be at least an in out pair of ports for each material type that is handled by the manipulator. At one moment the manipulator 

works only between one pair of ports of the same type. 

Ports are the components in the manufacturing flow that connect the flow of output material entities from the components with 

corresponding inputs to other components. These concepts are components in the manufacturing flow characterized by the types of 

materials and the direction of entry or exit. 

The control elements are components that transfer only information, so that they have only information ports - not necessarily all of 

the same information type. The control element is the ideal point for interfacing the model with other modules. The control element 

executes the control algorithm. The program reads feedback messages from the process from the input ports or commands from other 

command items.  Depending on the current status and inputs, commands are generated that are placed at outputs. 

By structuring this concept, a met model was constructed for the language. The Class representation of this metamodel is presented 

in figure 1.2. 

 



 

Fig. 1.2 The metamodel constructed from the categorial sketch 

Defining the graphical representation of elements 

In figure 1.3  we can see the symbolic notation that we attributed to this type of component. Attribute 

names are: Name, MaterialType, Capacity, OccupiedCapacity. 

In Fig. 1.4 we can see the symbolic notation that we attributed to this type of component. Attribute 

names are: Name, Duration, OperationCode, and a set of component records (MaterialType, 

MaterialAmountIn, MaterialAmountOut). 

Figure 1.3. Buffer representation 



In figure 1.5 we can see the symbolic notation that we attributed to the three types of conveyors, namely Fig. 

1.5a contains the notation for the conveyor type, Fig. 1.5 b contains the notation for the AGV type, and Fig. 

1.5c contains the notation for the manipulator type. The attribute names for the conveyor type are: Name, 

MaterialType, CapacityUnit, Capacity, TransportTime, OperationCode, and for the manipulator and AGV types 

there is a simple Name attribute and a set of structured records (MaterialType, TransportQuantity, 

TransportTime, OperationCode). 

Figure 1.4. Workstation representation 

 

        a. Conveyor                                   b. AGV                                        c. Manipulator 

Figure 1.5. Transport machines notations 

In figure 1.6 we can see the symbolic notation that we attributed to this type of component. Attribute names are: 

MaterialKind, PortName, PortDirectionType. 

Figure 1.6. Material port notation 

 



In figure 1.7 we can see the notations used for the control elements (figure 1.7 a) and the 

information ports (figure. 1.7b). 

 

a. Control element           b. Information port 

Figure 1.7. Control element and information port notation 

Defining the behavior of each element 

Buffers 

The buffer (figure 1.8) has 3 states: empty (cc = 0), partially loaded (0 <cc <c), full (cc = c). The buffer responds to 2 commands on the 

"load" and "unload" information port. 

If the buffer is partially full, "Load" increments cc. "Unload" decrements cc. "Cc" 

is output on the out port 

If the buffer is empty and "unload" is received, nothing is incremented, it is only 

issued on the out port - "empty".  

If the buffer is full and "load" is received, nothing is loaded, only it is issued on 

the out port - "full".  

Each upload operation has a duration. It can be implicit and the same for all 

such elements for simplicity or it can be entered as an additional attribute.   

Figure 1.8. State automaton modelling the buffer behavior 

Machines 

The machines (figure 1.9) take through materials from the buffers to which they are connected to the ports and deposit materials 

through the output ports into the buffers to which they are connected. 



The machine transmits the “unload” command to the input buffer / buffers and the “load” 

command to the output buffer / buffers. 

In the image we have a general machine with a single input buffer and an output buffer, 

Operation op1 requires n units from the input buffer and produces m units in the output 

buffer. When the op1 command appears on the information input port, the machine tries 

to load n units from the input buffer - going into standby mode when the buffer is 

completely empty and resuming the loading cycle when it is full. Each time the machine 

loads, it sends the “unload” command to the buffer and reads the cc attribute of the buffer.  

Figure 1.9 State automaton modelling the generic machine behavior 

 

After being loaded into units, the machine enters a processing state that has an associated duration. After the processing time has 

elapsed, the machine tries to unload m units into the output buffer - entering the standby state when the buffer is completely full and 

resuming the unloading cycle when it is empty. Each time the machine loads, it sends the “load” command to the buffer and reads the 

cc attribute of the buffer. After m units are loaded, the machine enters a state of inactivity in which it can receive the next command. 

 

 

 

 

 



Workstations 

The workstations (figure 1.10) operate at a given time according to a current 

operation. 

The peculiarity is that a machine can have several input buffers because of which 

several loading processes can take place in parallel. Only after all the materials are 

loaded in the appropriate quantities does it move to the processing phase. In the 

figure a mix with the UML notation (join fork on successive lanes) for a machine 

with two input buffers and one output buffer. Also, flexible machines can be 

connected to several input buffers, but for a specific operation they only take 

materials from some of them. 

 

 

 

 

 

 

 

 

Figure 1.10 State automaton modelling the  behavior of a workstation with  two input buffers and one output buffer 

 
 

 



Transport machines 

Autonomus Guided Vechicles (AGV)  

 

The peculiarity of AGVs is that they have: 

- a single input and output buffer 

- the same quantity taken from the departure buffer and unloaded 

at the arrival buffer. 

The transported quantity is an attribute and also the position. The 

processing can be decomposed into at least 2 states (if only the 

start and end positions are considered) undocking and docking. If 

several positions are considered, each of them will be a state. The 

transition between them will be made on the basis of an order 

coming on the information port to allow the control and 

synchronization of several AGVs. In the figure 1.11 we have an 

AGV that oscillates between the buffers p1 and p2. It docks for 

loading at p1  (dock l). After loading it detaches from p1 and when 

it receives the transfer command it docks for download at p2 

(dock u). After being emptied it detaches from p2 and when it 

receives the return command it is transferred again to p1 where 

it is docked for loading 

Figure 1.11. State automaton modelling the behavior of an AGV 

 

 

 



Conveyer/belt/pipe  

In this case the particularities are the specific start / stop command and the capacity. 

The quantities of material will be taken from the input buffer / buffers and will be 

deposited with the delay corresponding to the speed selected in the input buffer. If 

they have more than one input port, the streams will be cumulated. If they have more 

than one output port, the streams will be split. 

In figure 1.14 is a conveyor with an input port and an output port. The system loads 

and unloads at the same time. Any stop of loading or unloading stops the transport. 

Only if both processes are unlocked does the travel process resume. CCB is the current 

capacity of the bank. The system can be refined but complicates the overall scheme. 

 

Figure 1.12 State automaton modelling the behavior of an conveyer/belt/pipe 

 

 Manipulator  

Each command specifies the quantity, the port / Buffer from which they are taken and the port / buffer in which the materials are 

placed. The manipulator only works if the source and destination are available. The figure 1.13 shows a manipulator that can transfer 

materials from buffer b1 to buffer b2 and alternatively from b3 to b4.  

  

Figure 1.13. State automaton modelling the behavior of an Manipulator 



 

Unit 3 Model based design and analysis of manufacturing system 

The design problem 

Using the available design tools construct the model of a solution for the manufacturing line design problem described in Unit 2. In this 

context the design problem consists in finding the right and optimal configuration of such a manufacturing system that can respond to a 

customer order. A customer order specifies an assortment of products characterized by type of material and quantity that must be 

produced under some time and cost constraints. In this case the costumer order is of chocolate truffles packaged in aluminum bags and 

in cubic cardboard boxes  

Design methodology 

The design activity should be divided in three sub-activities presented below (A1-A3) [Mironescu2020]. 

A1. Layout design - in which the number, types, connections, and placement of the components of the line are established. In this phase the 

designer selects from a toolbox the elements that compose the line. He follows the order of operations (that transform the raw materials in final 

products) and the organization of the production line: flow shop, job shop, open shop etc. He connects the components with lines, representing 

each the flow of a specific material between 2 components. This activity will be addressed in this training Unit and the Unit 4 

A2. Operation planning/Scheduling - At this stage the designer solves the following optimization problem for the production line 

designed in A1: For a given number of jobs each consisting of a number of product units find a job execution order that minimize one or more 

aspects of the manufacturing process (for example completion time, and/or delays (due time – job completion time) and/or number of delayed 

job. This activity will be addressed in Units 5,6 and 7 

A3. Control system design 

At this stage the designer develops the control system that steers the line to perform the operations corresponding to a given schedule without 

user intervention. The control system should ensure that the jobs are executed in the prescribed order and with the prescribed timing and that the 

concurrent processes are coordinated so that no undesired events occur. This activity is addressed in another Training Course. 



 

 

Using the DSML developed in Unit 1  

Figure 3.1 presents the modelling tool generated from the metamodel for MSML designed in Unit 2. The user can compose graphically 

the model by selecting the graphical representation of the components from the toolbar and placing them on the modelling canvas. The 

component can be connected by selecting one of the relations present also in the tool bar and picking the components to be connected. 

In the MSML case the components are exchanging information through ports. The ports are themselves components so they must be 

placed between the components that should be connected. Connection line modelling the transfer path from machine to port and from 

port to machine are available. The port can be oriented in 4 directions (up, down, left, right) to indicate the material flow direction. To 

make the design functional and comprehensible the flow direction should be presented by orienting accordingly the ports. The layout 

should respect the alignment and orientation of a real manufacturing line. In a real manufacturing line, the material inlets and outlets of 

the machines are placed so that they allow chaining with short connections. 



After placing the components, the components should 

be labelled accordingly, and the values of the attributes 

should be also filled in. 

For the Buffers and AGVs the material Type and the 

Capacity must be at least specified. 

For the Workstations, the possible operations must be 

defined with the type and quantity of materials need as 

input and the type and quantity of resulting materials. 

For Conveyers, Belts, Pipes beside the capacity and 

material type , a transport time related to the capacity 

must be also specified 

For Manipulators the posible transfer paths must be 

specified 

Figure 3.2 presents the finished model.  

 

Figure 3.1 Modeling environement for the MSML  



 

Figure 3.2 Modeling environement for the MSML  

 



 

Using Petri Net in Bee Up 

In order to extend the possibilities of model (and design) analysis we will transform the MSML model in an  equivalent Petri net model. 

For this an equivalent model for each component must be designed. This is done considering the structure, port connection and also the 

behaviour of each element described in Unit2  

Figure 3.3 presents the Petri net equivalent of the Buffer component. To implement the limited capacity (number of material units) of 

this component two variants can be employed: 

- bounded place can be used if they are supported by the Petri net modeling, simulation and analysis toolchain (e.g. BeeUp) (fig.3.3a) 

- a supplementary control place (as employed in the Petri net-based control theory) is provided with an initial marking corresponding 

to this capacity. (fig 3.3b)) 

 

                                                                                                                         b) 

Figure 3.3 Petri Net implementation of a Buffer (B) 

a) using bounded places b) using a control place 

 



Figure 3.4 presents the Petri net model corresponding to a component from the Conveyor, Belt and Pipe subclass of the transportation 

machines class. The Capacity of the transport line is implemented in the arc weight. In the presented example 2 units of the transported 

material are transferred from the input port In_t_m3 to the output port Out_m3 in each step which corresponds to the TransportTime. 

The presence of the command place C allows the control of the transport – blocking the transfer if it has a token 

 

 

Figure 3.4 Petri Net implementation of a transport component 

(Conveyor,Belt,Pipe) Fig.  

 

The Petri net equivalent model of the Manipulator component is 

presented in figure 3.5. The represented manipulator can transfer two 

types of materials m4 and m6. Each transfer operation registered in the 

Manipulator is represented as a transport element. The transfers can’t be 

performed simultaneously because there is only one robotic arm 

performing it that is represented by the token in the place Idle.  

Figure 3.5 Petri Net implementation of a Manipulator    



For the Workstation the equivalent 

model is presented in Figure 3.6. 

The transformation rule is that for 

each incoming ingredient needed by 

the operation a net equivalent to a 

buffer is created complete with 

limiting capacity place. All these 

nets are connected through the 
unloading transition which has as 

many post-places as resulting 

materials from the operation. The 

represented workstation takes 2 

pieces of m3 and 3 pieces of m3 and 

produces 1 piece of m2.  

The individual models are the 

connected by substituting the places 

representing disconnected input and 

output ports with one single place 

representing the connection port. 

The resulting Petri net is presented 

in figure 3.7    

 

 

Figure 3.6  Petri Net implementation of a Workstation 

 



 

Figure 3.7   Petri net model of the chocolate manufacturing line  



 

 Analysis tools and methods 

The transformation of the model in the equivalent Petri net allows the qualitative analysis of proprieties of the modeled system using 

formal methods because Petri nets have a sound formal definition. This allows the proof of the presence or absence of some properties 

of the net through formal analysis. If we can map these properties to the properties of the of the modelled system, we can prove that this 

system presents or not this properties. This can be used to verify and validate the model or to validate and verify the system. 

For example, one structural property in the Petri net is the connectivity that can be associated to the real connectivity of system 

components machines in the real system. By analyzing the structure of the net it can be revealed if two places have a direct or indirect 

connection  so that a token can travel from a places to another 

The boundedness in Petri net is determined by the maximal number of token that can accumulate in a place. Usually, tokens model 

resources so the unbounded accumulation of tokens in a place indicate that can be caused by a blocked flow (which is a design flow that 

conducts to an unsafe accumulation of the modeled resource) or by an unnatural multiplication of the tokens (which is a modelling flow)       

The concept of liveliness of the net is correlated with the presence or absence of deadlocks in the modelled concurrent system so a 

structurally live Petri Net is a model for a deadlock-free system. 

In order to perform more sophisticated analysis of the state space of the system a suitable equivalent representation must be found As 

the model in both MSML or untimed Petri net form is a finite state system the best suited structure for a formal analysis is a Kripke 

structure.   

A state of the structure is represented as a tuple of the current material content of all buffers (Bi.Capacity). 

The set of atomic propositions AP is the set of proposition constructed with the increment (inci) and decrement (deci) operation on each 

buffer Bi.   

As the initial states determine the reachable states because the transitions are enabled or disabled depending on the buffer content, a 

Kripke structure will be build for each intended initial state.  

 



 

An algorithm that constructs the Kripke structure corresponding to a given initial state of the model is given in the following. The 

algorithm generates the structure iteratively from the initial state.  

S={} 

L={} 

TR={} 

C={s0}  

for each s in C 

for each s’ to which it can transition from s conforming to the above rules. 

add s’ to C 

add label l(s,ap) to L  

add TR(s,s’) relation to TR 

            remove s from C 

add s to S 

The resulted structure can be exported in the. ktz format used by many model checkers. The TINA (Time Petri Net Analyser) toolbox 

that will be used also in conjunction with Timed Petri nets simulation, contains a A State/Event LTL model checker named selt. Selt can 

be used to express some properties and testing them for Kripke structures constructed for the manufacturing system model with different 

initial states. 

 

 

 



 

 

Unit 4 Simulation based analysis of manufacturing system 

The simulation allows a quantitative analysis of the performance of the system in the case in which the number of states of trhe system 

is very big or infinite so that a state space analysis is not feasible anymore. We will explore the possibilities of two type of simulation 

that can be performed with the available tools: 

a) step simulation – can be performed in the ADOxx based modelling and simulation tools    

b) time stimulation - must be performed in an exterior tool as both MSML and Bee-up doesn’t have a time based simulation engine    

Step simulation 

Both modelling languages based on the ADOxx environment use a step based discrete event modelling engine. At each step the possible 

transition of the system is evaluated and the ones that meet the preconditions are performed. When the transition is performed the state 

is updated also in the graphical interface. 

As the Petri net simulation is not bringing significant information in comparison with the MSML information we will exemplify with 

the later this type of simulation. 

The simulation takes place in ADOxx Modelling Toolkit with the MSML library loaded. The model created in Unit3 should be loaded 

The transition to simulation mode is seamless. Only the perspective must be changed in the left-up corner of the toolbar from modelling 

to simulation. The toolbar will then present a next step tool. By clicking the next step all possible transitions are performed.  

The materials are transferred from one buffer to other respecting the behavior rules - mass conservation and operation mass balance. The 

content of the buffers represents the state of the system so this will be the subject of the analysis. 

If we simulate the model defined in Unit 3 and we represent the content of buffers (in material units) in each step, we obtain the plot 

represented in Figure 4.1.    

As the transition to editor is seamless, the content of the buffers can be modified during the simulation. The represented plot is for a 

simulation that vas not modified after the start. Only B1 and B2 are filled at the beginning of the simulation.   



    

             

Figure 4.1 Results of the simulation of the manufacturing line 

 

 



 

 

The simulation reveals that:  

- the starting values are sufficient for obtaining a final product  

- the flow of the production is continuous. 

- no unbounded accumulation or intermediary depleting of material take places 

In the end all buffers are depleted with the exception of B11 where the final product is accumulated. The whole production cycle takes 

17 steps and 3 units of final product are produced in this cycle.  

The method is good fro preliminary developing and checking the model. For more in depth analysis o9f the timely behaviour of the 

design a time based simulation is needed. 

The advantage of the ADOxx based development environment is that it provides a simple mechanism of exporting of the model in XML 

format. The Petri net created from our model in Unit 3 is exported in BeeUp in XML format. This XML is then translated in PNML that 

can be imported by other tools.    

Timed simulation 

We will use the TINA tool (TIme petri Net Analyzer) which contains beside a Petri net editor (nd) also a suite of analysis and simulation 

tools for timed Petri nets. The Petri nets add the time dimension to the simulation by associating time to the transitions. This time is 

understood as the time needed by the transition to fire. So when the tokens arrive in the preplaces of the transition, the transition is 

activated but doesn’t fire. Instead a countdown clock is started with the time value associated with the transition. When this clock reaches 

zero, if the activation tokens are still in place the transition fires as usual. If at least one of the activation tokens were stolen by a concurrent 

transition, the transition is deactivated and doesn’t fire anymore. The particular implementation in Tina introduces time intervals 

(windows) associated to transitions. If an transition has associated an interval [a,b] the value of the firing time is an random real variable 

in the interval [a,b]. This makes the possibilities of simulating nondeterministic (stochastic) Petri net. 



The Petri net elaborated in Unit 3 is the basis for the timed Petri net model of the system that we will use in our simulation. We will start 

by importing the PNML transformation of the net. The imported net is an untimed net so the first step is to associate to each transition a 

time interval following the rules: 

- if the event is a very short one (can be abstracted as instant) the time interval is [0,0] 

- if the event has a fixed duration t (very tight timed operations) the time interval is [t,t] 

- if the event has a variable duration between a and b the time interval is [a,b]      



Because the timed simulation needs more detailing of the different components of the model we will improve 

and complete some parts of the model using the supplementary arcs provided by TINA: inhibitor and read 

arcs. 

The first component to be completed is the buffer. In figure 4.2 the buffer B1 will discharge through the 

transition Unload_B1 at a different rate then the AVG moves (they are not anymore synchronized by the 

step) so we need to place one inhibitor arc between the m1_B1_AGV place (representing the connection port 

between the buffer B1 and the AGV) and the transition Unload_B1 place. The inhibitor arc deny the 

activation of the transition if the source place is occupied by more tokens than its weight. So the buffer will 

only unload when the port has less the 4 tokens in it. The synchronization between the AGV and the buffer 

is provided by the read arc between the  AGV1_docked_B1 place and the Unload_B1 transition. This arc 

allows the activation of the transition (unloading of the B1) only if the place is occupied (AVG docked). This 

type of synchronization will be applied to all buffers that necessitate it. 

The next component is the AVG. In this case we consider both paths of the AVG from B1 to B3 and from 

B3 to B1. The AVG can be in 4 positions represented by the corresponding places 

- docked at B1(starting position at the beginning of the cycle) 

- loaded and undocked in the vicinity of B1 

- docked at B2 

- unloaded and undocked in the vicinity of B2 

Between them the transition represents the action of the AVG 

- loading  

- moving from B1 to B3 

- unloading 

- moving from B1 to B3 

 

Figure 4.2 New model of buffer and AVG  



We then refined the behavior of the transport band that is actually a cooling tunnel 

that transports and cools the mold containing the truffles. The model is presented in 

figure 4.3. This machine is functioning continuously recirculating the moduls. From 

the start of the cycle until the first filled mould comes at the end of the transport 

machine it takes 1h or the equivalent of 300 moulds entering the transport machine. 

So the read arc  will stop the first 300moulds to passing. After that as a mould enters 

the transport another one is loaded in B5. 

 

Figure 4.3 New model for cooler transport machine  

 

The manipulator needs special attention. The more in depth automation of such a 

machine needs special attention and a more time. We implemented here a simple 

solution that approximate enough the behavior of this machine represented in figure 

4.4. The token representing the robotic arm when idle is present in place M1. So it 

has the choice to select between transferring materials from B6 to B9 or between B8 

to B10. As the two intervals are [0,2] and [0,8] the first choice is more probable as 

the second. This fits with the fact that the arm must transfer 4 truffle bags in the first 

case and 1 cardboard box in the second. The separate way also assures that after the 

choice is made the manipulator cane not be hijacked by the concurrent transition. 

This is a common solution for such situation in the context of the current 

implementation of time in Petri nets.     

 

 

Figure 4.4 New model of the manipulator  

 



Further synchronization is needed between the two lines – the truflle aluminum 

bags producing line and the cardboard box line. As the cardboards are produced 

more quickly than the 4 aluminum bags with truffles they will accumulate if the 

production of the 2 lines is not synchronized. Figure 4.5 presents the proposed 

solution. A command place (p77) is linked to the unload transition of the buffer 

B7. Every time a aluminum bag is produced a token is also placed in this place. 

When 3 tokens are accumulated in the place – signalling that 3 bags where 

already produced – the machine WS3 is fed with the cardboard sheet to form 

the box in parallel with the packaging of the 4th bag.   

A further simplification was operated. To allow simulation that are longer than 

a shift, the feeding of B1, B2 and B7 was abstracted. The places corresponding 

to the ports where eliminated and the transition where “programed” to fire after 

8 hours, simulating the replenishing of the stock at the next shift beginning. The 

model of the final product buffer B11 was similarly modified to allow the 

emptying of the buffer at the end of shift. 

Figure 4.6 presents the complete network.  

Before starting the simulation, the initial marking corresponding to the initial 

state at the beginning of the shift was placed in the net. The B1, B2 and B7 were 

filled with the number of tokens corresponding the necessary raw materials for 

a shift. The capacity places (Cap_B..) where all filled with the number of tokens 

corresponding to the maximum capacity. The tokens for the AVGs where placed 

in the docking positions at B1 and B2  and the token for the robotic arm was 

placed in the idle position M. Al other places where left empty modelling empty 

machines 

Figure 4.5 Synchronization between the lines 



 

Figure 4.6 Complete time Petri net model of the manufacturing line 



With the initial marking the simulation can be started. This can be done interactively using the stepper simulation accessible in the tools 

menu or in the command line with the tool play. 

The simulation windows is presented in figure 4.7. The upper toolbar has controls for driving the simulation: a player like set of buttons 

for stepping forward (>), backward (>), rewinding to the begin or fast forwarding to the end. These buttons control the navigation of the 

current simulation path.  

There is also a button that starts the automatic (without user interaction) performing of simulation.   

The status bar below has on the left the control panel for the next step and on the right the simulation time display. 

In a step by step simulation the user is always in control. The program evaluates the initial markings. When a transition has all preplace 

occupied by sufficient tokens it is displayed either in red (if it can fire immediately) or in gray (it is activated but can fire only after a 

delay). If the transition is only activated the associated time interval is displayed in red. The user can click on any red transition and 

trigger it. After all red transition are fired the user has the possibility to advance on a local time scale the time between 0 and the earliest 

firing time from all the gray transitions - the minimal value from the lower bounds of their firing time windows. In the moment it reaches 

this firing time the corresponding transitions change to red. The total simulation time is also advanced. The time can be also advanced 

automatic to the minimal value from the higher bound firing time of their firing time windows by clicking the max button.  Al the red 

transition can be fired manually as explained before. The random character of the simulation is determined only by the user choices. He 

chooses in which order to fire the red transitions or at which position of their firing time window to fire them. 

If the rand button is clicked the program advances automatically the simulation. It selects randomly from the red transitions the one to 

fire. For the grey transitions it generates a random number in the bounds of the firing time window. From all generated random number 

it selects the smaller and advances the simulation to this point and fires the corresponding transition. 

The two simulation types can be mixed by stopping the automatic simulation at a certain point and continuing manually from there or 

starting manually for the initial phase and continuing automatic for the stable phase or alternating the types. 

At any point in the simulation, the user can navigate on the trajectory described by the system until this point using the navigation buttons 

and change its choices exploring alternative paths in simulation. 

Figure 4.7 presents a simulation in performing 



 

Figure 4.7 Simulation of the manufacturing line 



By analyzing the results, qualitative information about the capabilities of the designed system can be acquired: 

- the productivity of the system is given by the ratio between the number of units of final product present at the end of the simulation 

in the corresponding buffer (B11) and the simulation time. This can be analyzed globally (one shift) or on certain time periods (for 

example at beginning of the shift until the line is filled, or at the end of the shift). If randomness is incorporated many runs ar needed 

and the distribution of results can give information about the variability of the process 

- by maximizing the material input and performing the simulation until the depletion of the initial material the maximal capacity and 

productivity in final product can be determined  

- the accumulation of tokens in buffers indicates a desynchronization between the different stages of the manufacturing line that can 

be solved like in reality by modifying the speed of material flow or by introducing control links. 

- the buffers depleting to fast or long time empty is a sign that they are under dimensioned or and/are under feed. The capacity of the 

buffers and the material flows can be adjusted in the model and verified by a new simulation. 

- the time spent by tokens in places can be used to identify resource utilization either by only monitoring the time spent in idle places 

or by extending the monitoring to all states.                

 

 

 

 

 

 

 

 

 

 



 

Unit 5 Scheduling in manufacturing system 

Key concepts in scheduling 

Scheduling in a manufacturing line concept is the activity of elaborating a production schedule. A production schedule is a short-term 

execution plan. We consider a manufacturing line composed of machines that can handle at most one task at a time. A fixed number of 

jobs with some given characteristic (i.e., tasks, the necessary sequential constraints, the time estimates for each operation and the required 

resources, no cancellations). The jobs must be processed by the manufacturing line in a way that satisfy some (mostly time but not limited 

to) constraints. The performing of the task needs beside the corresponding machines also other resources (input material, human labor, 

energy, etc.) that are limited and must be shared by all jobs. The scheduling is then an assignment problem. The schedule is then a list 

of tuples of the form (resource, task, begin time, end time). Normally the resource is the machine to which the tasks map naturally, all 

other resources being mapped to the task. 

A feasible schedule is a schedule that allows the completion of all jobs without violating any constraints.   

A particular schedule determines particular values for the starting and completion times of the jobs, idle time of resources, lateness of 

jobs (difference between job completion time and Job due times)          

An optimal schedule is feasible solution that minimize some of this values in the context of multiple jobs (for example the completion 

time for alș jobs, the total idle time for the resource).    

In this view a scheduling problem is an optimization problem. We present the usual mathematical description of such a problem. 

A scheduling problem is represented by a triple α | β | γ, in which resources are allocated to orders (with the above properties). The design 

of the resources (α), the running properties and constraints (β) and the target function to be minimized (γ) is specified by the triple.  

We use following  notation 

n ∈N Number of orders 

m ∈N number of machines (= resources)  

i ∈ {1, ..., m} (mostly) index for a machine 

j ∈ {1, ..., n} (mostly) index for an order  

Si schedule (flow chart) on machine i, permutation of a (partial) set {1, ..., n}  



Si(j) ∈ {1, ..., n} position of order j in process on machine i  

pj ∈N0 processing time of order j on one machine  

pij ∈N0 processing time of job j on machine i  

rj ∈N0 arrival time of job j, i.e. earliest time at which a job can be scheduled (release date)  

dj ∈Z delivery date of job j, i.e. Time at which an order should be completed (due date)  

wj ∈N0 weight of job j, e.g. Value, cost, priority etc. (weight) 

Cij ∈ R+ completion time of job j on machine i. This value depends on the schedule S to be selected and, if applicable, on 

the arrival times rj.  

Cj ∈ R + completion time of jobv j. If there is more than one machine (m> 1), Cj: = max {C1j, ..., Cmj} is defined. 

 

α can take only one of the following values 

1 – only one machine 

Pm -  m identical machines that run in parallel. A job needs (and may only be processed on) one machine.  

Fm -  m machines in a flow shop, every job must be carried out on every machine. The order of the machines is 

predetermined and the same for all jobs 

Jm - m machines in a job shop. The order is prescribed but not necessarily the same for all jobs. 

Om – m machines in an  open shop. The order in which the processing happens is arbitrary.  

 

β can have multiple entries or no entry.  

 pj = p - all orders have the same processing time.  

 dj = d  - all orders have the same delivery date. 

 rj   - arrival times must be taken into account, i.e. that an job j may not be processed before time rj.  

pmtn (preemption) - if present in field β, orders may be interrupted and resumed as often as required without increasing 

the processing time for this order. It is generally assumed that orders must be processed on one 

machine without interruption. (In the same way, it can be assumed that an order may be interrupted, 

but that it will need all of its processing time to be completed once it has been resumed).  

prec  - there are precedence constraints. A priority relationship i → k means that order k may only start after order j has 

ended. Corresponding conditions can occur in single-machine models as well as in multi-machine models. 

 sjk  - sequence-dependent setup times (setuptimes) between job j and job k. If job k is executed on a machine after job j, 

the machine must remain unoccupied for sjk time units. s0k describes the set-up time when job k is first executed 

on a machine. If there are set-up times that are independent of the sequence, these can be integrated into the 

processing time in the modeling and do not require any explicit consideration.  



prmu - only affects flow shops. Forces that all jobs are executed in the same order on the machines  

nwt – no wait time- the processing on the next machine must start immediately after is finished on the current machine  

 γ  can have one of the following values signifying the value that should be minimised.  

 

Cmax  - the total duration (makespan) of a schedule corresponds to completion time of the last completed job Cmax: = max {C1,. . 

. , Cn}.  

Lmax  -  Lmax: = max {L1,. . . , Ln} where Lj the delay in an job j is Lj: = Cj - dj (lateness).  

Cj   - the total completion times.  By minimizing this sum (interim) inventory costs can be reduced. As min Cj   is equivalent 

to minimizing the mean lead time ( Cj / n) and so minimizing the "waiting time" (= Storage time).  

wjCj - the sum of the weighted completion times, e.g. weight can be storage cost rates.  

Tj -  the sum of missed deadlines Tj: = max {Cj - dj, 0} = max {Lj, 0}.  

wjTj - the sum of the weighted missed deadlines, in which the deadline for individual Orders weighs worse than others.  

Uj - the number of missed deadlines Uj: = ( 1 if Cj> dj 0 otherwise).  

wjUj - Even if deadlines are missed, the Define the weighted number of missed deadlines.  

 Yj - the sum of late work  Yj = time units of an order j that are after the delivery date dj, Yj: = min {Tj, pj}.  

wjYj - the sum of weighted late work 

A single machine process model 

For example, we consider a packaging machine that can pack different food products in the same type of package. A job is characterized 

by the type of packaged product and the number of units (processed or produced). The time needed for operation depends on the 

number of units, but it is aso important to reduce the job completion time so that the product has short intermediary storage time. In 

this case a weight is associated with each job – according to the product type. 



As we don’t have other constraints, we can express the scheduling problem as  

(1|| wjCj) 

The parameters of the jobs are presented in Table 

 

 Table 5.1 Parameters of jobs for the example 

j 1 2 3 4 5 

pj 3 6 5 7 6 

wj 10 12 3 8 1 

 

Elaborating a schedule for the proposed model 

A helpful graphical tool for building schedules is a variant of Gant chart. The diagram has the time on abscissa and the resource (machine) 

on the ordinate. Each job is represented as a colored rectangle. Each job j has the length equal to pj. The height is not associated by 

default to any parameter. Building a schedule means placing the rectangles representing the jobs on the diagram so that the constraint 

specific to the scheduling problems are maintained.         

So from (1|| wjCj) following rules are derived  

• single machine case - we have a single row on the ordinate. The rectangles representing jobs are all aligned to this row as they 

are all executed on the same machine. 

• no pre-emption - the rectangle are not split. 

• the machine can execute one job at the time so the rectangle can’t overlap.  

• the rectangles are aligned to the starting times of the jobs 

• no setup time so the rectangle can be aligned to the end of the previous rectangle = the next job can start immediately as the 

current job is finished 

• weight are used so they are printed on the task  



In this training unit we will build only a feasible schedule, so the only condition is to put all jobs on the schedule without overlapping 

and chain them one to another. The most obvious way to make this is to place them in their numbering order (that can be interpreted also 

as their arrival order. The result is presented in figure 5.1 

     

Figure 5.1 A feasible schedule for the example problem 

 

For this schedule the completion time of task 1 is 3 (=p1), the completion timle of task 2 is 9(=p1+ p2). 

Generaly for the job j the completion time is Cj= rj+pj  

The release time for the job is the sum of the processing time of the previous jobs rj=pk, with k 1 j-1  

Cj= pk with k 1,j but also Cj=Cj-1+ pj 

As a result the completion times are presented in Table 5.2 

Table 5.2 Completion time 

j 1 2 3 4 5 

Cj 3 9 14 21 27 

wj 10 12 3 8 1 
 



The objective function has in this case the value wjCj = 3*10+9*12+14*3+21*8+27*1=375 

Exercise 

1. Try to find a optimal schedule or at least a better schedule than that presented    

A multi-machine model 

In the case of multiple machines the organization of the shop (Parallel, Flow, Job, Open) is essential adding specific constraints to the 

schedule. We consider a manufacturing process with 4 machines (1) heating, (2) moulding,(3) temperingand (4)packaging. The jobs 

must be executed on all machine, in the same order from heating to packaging so the organisation is of a flow shop. We consider two 

jobs: 

1 a big lot of chocolate bars with simple forms.  

2 a small lot of chocolate products with individual forms and complicated moulds 

As a results the heating and packaging time will be bigger for the bigger lot, and the moulding and tempering time will be bigger for the 

lot with complicated moulds. 

The processing time for the jobs on the 4 machines are presented in table 3 

Table 5.2 Parameters of jobs from the flow shop example 

    

j 
1 2 

p1

j 
4 1 

p2

j 
1 4 

p3

j 
2 2 

p4

j 
4 1 



 

Depending of the possibility of interchanging the jobs on a machine the scheduling problem of reducing the total duration of the 

processing can be formulated either as 

(F4|prmu|Cmax) when the jobs can’t be interchanged 

or as   

 (F4||Cmax) when the jobs can be interchanged 

 

  

Elaborating a schedule for the proposed model 

So from (1|| wjCj) following rules are derived  

• multiple machine case - we have a multiple rows on the ordinate.  

• Each job is executed on each machine so they are multiple rectangles representing the tasks of the same jobs each aligned to the 

row of the machine of which they are executed. 

• no pre-emption - the rectangle are not further split. 

• each machine can execute one job at the time so the rectangle can’t overlap.  

• the rectangles are aligned to the starting times of the jobs 

• no setup time so the rectangle can be aligned to the end of the previous rectangle = the next job can start immediately as the 

current job is finished 

• the next task of the job can start on the next machine only if the current task of the job is finished on the current machine. 

 

The release time of the i task of a job on a machine i is equal to the completion time of the precedent task on the preceding machine  

rij= Ci-1,j  for i>1 



C1j is depending of the job order and on the interchange clause. 

Following this rules only two feasible schedules are possible for the (F4|prmu|Cmax) case . They are presented  in figure 5.2. Figure 5.2a 

describes the schedule starting with job 1(S1) and figure 5.2b the schedule starting with job 2(S2). Cmax(S1)=12 and Cmax(S2)=13 so S1 is 

the optimal schedule 

 

 

 

 



  

Figure 5.2 The schedules for the example problem (F4|prmu|Cmax) 

a) S1 starting with job 1 b) S2 starting with job 2 

 

 

 

 



 

For the case (F4||Cmax) theoretical they are 16 possible schedules – 

including the 2 presented before. In figure 5.4 an example is 

presented in which an interchange occurred in machine 3.   

The Cmax for this schedule is 13. 

 

 

 

 

 

 

 

 

 

Figure 5.4 A feasible schedule for the example problem (F4||Cmax) 

 

 

 

 

 



 

Unit 6 Single objective optimization of the schedule 

Single objective optimization 

In this case only one objective function must be minimized. 

Optimization of the schedule for one machine case 

Example 1 (Lateness)  

For a manufacturing line with one machine we consider the set of 5 jobs described by the parameters (processing times and delivery 

dates) from table 6.1 

Table 6.1 Parameters of jobs for the single objective optimization problem 

j 1 2 3 4 5 

pj 5 9 8 4 3 
dj 3 12 7 18 5 

 

We want in this case to find a schedule that minimize the maximal lateness (delay). The problem is then  

(1| |max Lj) with Lj= Cj - dj 

Solution 

The solution to this type of problems is to sort the jobs according to their ascending delivery time. The sorted list is then the searched 

schedule.  

In this case the table 6.2 summarizes the principal parameters of the solution together with the job parameters for the ease of 

understanding 

 



Table 6.2 Parameters of the solutions 

 j 1 5 3 2 4 

  pj 5 3 8 9 4 

dj 3 5 7 12 18 

Cj 5 8 16 25 29 

Lj 2 3 9 13 4 

The solution is then S=(1,5,3,2,4). As proved in [Jaehne2019] this is the optimal solution – the schedule with the minimal maximal 

lateness. For this schedule it is the lateness of job 2 L2=13 

 

Example 2 (Number of late orders)  

For the same machine we consider the set of jobs presented in table 6.3 

Table 6.3 Parameters of jobs for the single objective optimization problem 

j 1 2 3 4 5 

pj 7 3 3 6 2 
dj 8 9 11 13 16 

 

An order j, j ∈ {1, ..., n} is late if Cj> dj.  We want in this case to minimize the number of late orders, i.e. minimize | {j ∈ {1, ..., n} | Cj> 

dj} |. 

 Solution 

In this case the goal is to reduce the number of late order not to reduce the latencies of the order that are late. As a result the orders that 

are inevitably late can be scheduled at the end. A method was developed by Moore in 1968 based on this idea. We start with a schedule 

in which the jobs ar already sorted and renumbered in the order of not descending delivery times dj.    

 
 



Algorithm 1 (Moore method):  

1. Initialization: Sort the jobs non-descending according to delivery dates, so let d1 ≤ ... ≤ dn be assumed. Let the number of late 

order U: = 0.  

2. Stop criterion: If Cj ≤ dj ∀j ∈ {1, ..., n} with S (j) ≤ n - U, then stop. There are no more jobs that will be late.  

3. Determination of the job to be postponed: Let k: = argmin j∈ {1, ..., n} {S (j) | Cj> dj} be the earliest scheduled, late job. Further, let 

l ∈ argmax j∈ {1, ..., n} {pj | 1 ≤ S (j) ≤ S (k)} be an job with the longest processing time among the first S (k) orders.  

4. Postponing the order: Define the following schedule:  

S’(j) = n if j = l | S’(j) = S (j) −1 if S (l) <S (j) |S’(j) =S (j) otherwise  

set S: = S’, U: = U +1 and go to step 2. 

To solve our example, we start with the configuration in table 6.4. We have 4 delayed jobs (2-5) 

Table 6.4 Parameters of the starting schedule 

j 1 2 3 4 5 

pj 7 3 3 7 2 

dj 8 9 11 12 16 
Cj 7 11 14 20 22 

Iteration 1 

step 2: there are more the 1 late jobs 

step 3: the earliest scheduled late job is 2  so k=2. The job with the bigger processing time is 1. So the job l=1 will be postponed 

at the end of the schedule  

step 4:  U=1 and the new schedule is  presented in table 6.6 

Table 6.5 Parameters of the schedule after the first iteration 

j 2 3 4 5 1 

pj 3 3 7 2 7 

dj 9 11 12 16 8 

Cj 3 6 13 11 18 



 

Iteration 2 

 step 2: there is 1 late job(4) n the first n-U=4 jobs  

step 3: the late job is 4  so k=4. The job with the bigger processing time is also 4. So the job 4 will be postponed at the end of 

the schedule  

step 4:  U=2 and the new schedule is  presented in table 

 

Table 6.6 Parameters of the schedule after the 2nd iteration 

j 2 3 5 1 4 

pj 3 3 2 7 7 

dj 9 11 16 8 12 

Cj 3 6 13 20 27 

 

Iteration 3 

step 2: there are no more late jobs in the first n-U=3 jobs. The search stops and the current schedule is the optimal schedule 

with only 2 jobs that are late.  

 

Example 3 (Weighted completion time)  

In the same context let consider the set of 4 jobs presented in table 6.7 

Table 6.7 Parameters of the jobs for the example 3 

j 1 2 3 4 

pj 3 5 6 8 

wj 5 10 9 1 

 



 Let us consider the scheduling problem (1 || wjCj j   

Solution  

We start from the schedule S(j)=j  presented in table 6.8 

Table 6.8 Parameters of the jobs for the starting schedule  

j 1 2 3 4 

pj 2 2 3 9 

wj 6 9 11 2 

Cj 2 4 7 16 

The objective function  is wjCj=6*2+9*4+11*7+2*16=157 

The method used here is to sort the jobs in the ascending order of their pj / wj values. This sorting rule is called WSPT (weighted 

shortest processing time) or Smith rule.  

Following the rule the resulting schedule is presented in table 6.9 

Table 6.9 The optimal schedule for the example 3 

j 2 3 1 4 

pj 2 3 2 9 

wj 9 11 6 2 

pj/wj 2/9 3/11 1/3 9/2 

Cj 2 5 7 16 
 

The objective function  is wjCj=9*2+11*5+6*7+2*16=147 

 

 



 

 

Optimization of the schedule for multi  machine case 

Example 

We consider the two machine flow shop problem (F2 || Cmax) the only scheduling problem that can be solved exactly in polynomial 

runtime 

For this we consider the set of jobs from table 6.10 

Table 6.10  Parameters for the jobs  

    

j 
1 2 3 4 

p1

j 
4 1 3 2 

p2

j 
1 4 2 6 

 

Solution 

 

In the solving of the problem the so-called "Johnson rule" is used, which is a priority rule based on modifications of the Shortest 

Processing Time (SPT) and Shortest Processing Time (LPT) rules.  

While the SPT rule and the LPT rule are based on the entire processing time of an job on all machines, the STT rule (shortest task time) 

is based only on the processing time of an job on one machine. Similarly, the LTT rule (longest task time) selects the next job on a 

machine based on which job has the longest processing time on that machine. Because only two machines are used only one permutation 

of the job is required to solve the problem. 

 

Solving the problem 

Algorithm (Johnson's algorithm):  



1. Initialization: 

Let J be the set of all orders and J1: = {j ∈ J | p1j <p2j} the set of orders whose processing time on machine 1 is shorter than on 

machine 2  

2. Determining the order: 

First schedule all jobs from J1 according to the STT rule (related to machine 1). 

Then schedule the remaining orders according to the LTT rule (based on machine 2). 

 

For the example above we have   J1={2,4} 

So the order of scheduling is   

2 (p12<p14) following the STT rule on machine 1 

4 last from J1 

3 (p23>p21) following the LTT rule on machine 2 

1 last job to be scheduled  

Te table 8.11 contains the schedule The objective function is Cmax=14.  

Table 6.11  Parameters for the jobs  

    j 2 4 3 1 

p1j 1 2 3 4 

C1j 1 3 6 10 

p2j 4 6 2 1 

C2j 5 11 13 14 
 

 

 

 

 

 



Unit 7 Multiple objective optimization of the schedule 

Because even the single objective optimization problems are in the category of hard NP-complete problems and can be solved only using 

heuristic, in order to solve multiple objective optimization problems multiple upper-level multi-objective methodologies (i.e., meta-

heuristics) must be employed. Metaheuristic’ search methods can be defined as upper level general methodologies guiding strategies in 

designing heuristics to obtain optimization in problems. 

 We will present one class of such problems and the methodology use to solve them. These problems are closely related to the 

manufacturing line presented in the previous modeling and simulation units  

 

The PFSP (Permutation Flow Shop Problem) with Unlimited Buffers  

The PFSP consists of m machines arranged in series in which, a set of n jobs must be processed in the same sequence. Supplementary to 

the standard description and notation of Flow Shop problems there are infinite capacity buffers between machines. The setup times are 

included in the routing times of operations and the process cannot be interrupted at any time.  

Let: ∏= (π(1), π(2),…, π(n)) be a solution of the permutation flow shop scheduling problem, where π(i) corresponds to the job in position 

i in the sequence ∏, N the number of jobs, M number of machines, tπ(i),j the processing time of the job in position i in the sequence on 

machine j, dπ(i) the due date of job in position i in the sequence, Tπ(i) the tardiness of job in the permutation and Cπ(i),j the completion of 

the job in the position i on the machine j that can be recursively computed as follows. 

Cπ(1),1 = pπ(1),1 

Cπ(i),1 = Cπ(i-1),1 + pπ(1),1 

Cπ(1),j = Cπ(1),j-1 + pπ(1),j 

Cπ(i),j = Max(Cπ(i-1),j-1, Cπ(i),j-1) + pπ(i),j 

Where, i=2…n and j =2…m, noticeably, the total amount of time required to accomplish processing of all jobs denoted makespan Cmax 

is given by Cπ(N),M  that represents the completion time of the last job on the last machine 

 Moreover, the tardiness of job in position i in the permutation is obtained by the following equation  



 Tπ(i)=Max(Cπ(i),M - dπ(i),0) (6)  

 Correspondingly, the maximum tardiness  is expressed as  

 Tmax=max1<i<N(Tπ(i)) 

  

The PFSP with Limited Buffers  

The blocking flow shop scheduling problem (BSFP) is the permutation flow shop scheduling problem (PFSP) with a supplementary 

constraint - the capacity of storage between two successive machines is limited or zero. As modeled in the MSML, if the next buffer is 

full or with null capacity the current job is blocked in the current resource until the next resource is available for its execution. Given 

that Rπ(i),j represents the start times of the job in the position i in the machine j, the make span and maximum tardiness are computed as 

follows:  

Rπ(i),j = Max(Cπ(i-1),j, Cπ(i),j-1 + Rπ(i-1),j+1)  

Cπ(i-1),j = Rπ(i-1),j + tπ(i-1),j 

Cπ(i),j-1 = Rπ(i),j-1 + tπ(i),j-1 

Tπ(i)=Max(Cπ(i),M - dπ(i),0) 

Cmax=Cπ(N),M 

Tmax=max1<i<N(Tπ(i)) 

 

Multi Objective Optimization Problems  

The problem that will be analyzed is that of simultaneously minimization of makespan Cmax(π) and maximum tardiness Tmax (π). As the 

measures of performance often conflict with themselves we try to find a objective a set of optimal solutions called Pareto optimal 

comprising all non-dominated solutions. In fact, solution π dominates π* if and only if  

Cmax(π) <= Cmax(π*)  and  Tmax (π) <= Tmax (π*) 



Cmax(π) < Cmax(π*)  and  Tmax (π) < Tmax (π*)  

Metaheuristic 

We will use the Non-dominated Sorting Genetic Algorithm II (NSGA-II) which is an enhanced version of the Non-dominated Sorting 

Genetic Algorithm (NSGA) proposed by (Deb et al., 2002) for solving non-convex and non-smooth multi objective optimization 

problems.  

The genetic algorithms use a mechanism inspired by the evolution in order to find the solution to a given problem. Each potential solution 

of a problem is an individual encoding the characteristic of the problem in a way that is similar to the encoding of genetic information 

in the chromosomes. New solutions are produced similar to the real life by mutation (changing of the encoded information with new 

information) or crossover (exchange of encoded information between the individuals). The individuals are tested for fitness (how good 

the solution is for the given problem) and ranked accordingly to this. This ranking is used further to direct the process of generating new 

individuals with the goal of obtaining better and better solution with each new generation. The different methods differ in the way they 

encode the information, they apply mutation and crossover and they select the parents for the new generation. 

The NSGA II            

• uses a fast non-dominated sorting procedure to rank all the individual in accordance with their level of non-domination;   

• integrates elitism that preserves all best solutions (non-dominated) from the parents and children population.  

• eliminates the difficulties of the sharing function approach by implementing the crowding distance technique with the aim to 

maintain diversity and the propagation of solutions.  

• incorporates a crowded-comparison operator (≺n) in order to orientate the selection at different steps of the approach. 

In every iteration, new off springs are created through the classical crossover and mutation operators applied to the current population. 

Thereafter, the different operators of the algorithm including crowding distance, fast non-dominated sorting, and crowded comparison 

selection are carried out on both of parents and generated off springs. We will use the method developed by [Lebbar2017] to solve the 

PFSP and the BFSP scheduling optimization problem using a modified variant of NSGA 2. This method uses some specific versions of 

the NEH heuristic for the initialization of the populations  

 



Solution Encoding  

The solution is presented as a vector of values ranging from 1 to the number of jobs n. This solution representation is known as a jobs 

permutation that indicates the order of jobs in the sequence.  

 

Initializing Population  

The method uses a revised variant of the NEH heuristic proposed by [Nawaz1983] called RNEH for the solving of PFSP multi- objective 

problem and a revised variant of the NEH-WPT heuristic [Wang2010] called RNEH-WPT for the solving of BFSP multi- objective 

problem,  

In RNEH priority is given to jobs that have a high operating time 

For RNEH  the algorithm is the following: 

Set l=1 and and  i=0   (i refers to the number of jobs  in the sequence  and N to the number  of jobs 

Start 

Step 1 Calculate for each job the sum of processing times on the m machines  

Step 2 Sort the list of jobs in descending order of the total processing time  

Step 3 i=2 extract the first 2 jobs from the sequence , compute the value of  F= 0.5 ∗ Cmax(π) +0.5 ∗Tmax(π) for the possible sequences 

of this jobs. Set the sequence with the minimal F as the current sequence * 

Step 4 i = i + 1 take the i element from  and insert it in every of the i position before, between and after the elements of the the 

current sequence *. Calculate for each such sequence the value F and set the sequence with the minimum F as the new P* 

Step 5 If i=N let l = *;  = *; and go to step 6, otherwise go to step 4 

Step 6 l=l+1;  if l=4 stop  otherwise go to step 3 

At the end of the algorithm we have 4 candidate solutions 1, 2, 3, 4 



The RNEH-WPT is similar only the step 2 is changed Step 2 the list of jobs in ascending order of the total processing time  

The rest of the method (fast non-dominated sorting technique, diversity guarantee and selection procedure, genetic operators) is 

performed as in the standard NSGA 2 described in [Deb2002] 

The  algorithm is  

1 initialize population of size P 

1.1 apply the RNEH or RNEH_WPT to generate 4 individuals 

1.2  generate the remaining  P-4 individuals randomly 

2.  Evaluate each individual in the population and assign  a rank according to Pareto dominance  sorting procedure. 

3.  Generate O  offsprings population: 

3.1  apply the binary tournament selection 

3.2  apply the two point crossover operator with a probability Pc  to generate offspring 

3.3  use the shift change   mutation  operator with a probability Pm 

4 For i = 1 to Genmax do: 

4.1 For each  individual of the combined offspring  and parents population: 

4.1.1 assign rank  based  on Pareto  dominance sorting procedure 

4.1.2  determine the crowded distance of individuals in each front 

4.2  select the best P solutions of the combined population using crowded comparison operator 

4.3  generate the Next Generation: 

4.3.1  apply the binary tournament selection 

4.3.2  apply  the two points crossover operator to generate offspring 



4.3.3  use the shift change mutation operator 

Implementing the solution in Matlab 

As the candidate solution of schedule can be represented as vectors of permutation indexes and all genetical mutations and crossover 

operation can be expressed as operation on vectors (slicing and concatenating). So the steps in implementing the algorithm in Matlabs 

are the following: 

- establish a format for the job parameter matrix  

- write the function cmax that takes a job parameter matrix and a vector containing a job permutation and calculates the makespan 

for the given permutation 

- write the function tmax that takes a job parameter matrix and a vector containing a job permutation and calculates the tardiness for 

the given permutation 

- write the functions that implements the RNEH and RNEH_WPT algorithms. The functions take as parameters a job parameter 

matrix and a vector containing a job permutation. Internally they use slicing to construct the partial candidates and return a 4 row 

matrix containing the generated first solutions 

- Integrate the defined functions with a Matlab package implementing NSGA 2 of your choice available on Internet 

https://de.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm 

https://de.mathworks.com/matlabcentral/fileexchange/49806-matlab-code-for-constrained-nsga-ii-dr-s-baskar-s-tamilselvi-and-p-

r-varshini 

https://de.mathworks.com/matlabcentral/fileexchange/62487-nsga-ii-to-scheduling 

https://de.mathworks.com/matlabcentral/fileexchange?q=NSGA  

  If no prior experience with Matlab is available the implementation can be also performed in the mlanguage of your Choice 

 

 

 

 

https://de.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm
https://de.mathworks.com/matlabcentral/fileexchange/49806-matlab-code-for-constrained-nsga-ii-dr-s-baskar-s-tamilselvi-and-p-r-varshini
https://de.mathworks.com/matlabcentral/fileexchange/49806-matlab-code-for-constrained-nsga-ii-dr-s-baskar-s-tamilselvi-and-p-r-varshini
https://de.mathworks.com/matlabcentral/fileexchange/62487-nsga-ii-to-scheduling


Unit 8 Final assessment 

The students will receive the task of solving teams a similar task to the complex task presented as example without receiving guiding. 

The functioning of the system should be proved through simulation. 
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