Process Simulation in manufacturing Introduction to simulation and Flexsim

Prof. Fabiana Pirola

www.digifof.org

Agenda

- What is Simulation?
- Why to Simulate?
- Which are the main phases of a simulation project?
- What is FlexSim?
- The FlexSim Simulation Logic
- Demo Case: Simple manufacturing process
- FlexSim Tutorials
- Advanced Topics

Downloading FlexSim

What is Simulation?

What is Simulation?

Simulation paradigms

High Abstraction Aggregates, Global Causal Dependencies, Feedback Dynamics, ... Less Details Macro Level System Dynamics (SD) Agent Based Strategic Level Levels (aggregates) (AB) Stock-and-Flow diagrams Active objects Feedback loops Individual behavior rules Middle "Discrete Direct or indirect Abstraction interaction Event" (DE) Medium Details Environment · Entities (passive Meso Level models objects) Tactical Level Flowcharts and/or transport networks **Dynamic Systems (DS)** Resources · Physical state variables Low Abstraction · Block diagrams and/or More Details algebraic-differential equations Micro Level Operational Mainly discrete + ! + Mainly continuous Individual objects, exact sizes, distances, velocities, timings, ... Level

Types of simulation

Discrete Event Simulation	Agent Based Simulation	System Dynamics
Process-oriented : focus is on modeling the system in detail	Individual-oriented : the focus is on modeling the entities and interaction between them	System-oriented : the focus is on modeling the system observable
Based on entity flows through blocks	Based on the single agents interacting with each others	Based on stocks and flows between stocks
Entities are passive	Agents are active	Continuous systems, no entities
Global system behavior	Global behavior results as the interaction of many agents	Global system behavior as a number of interacting feedback loops
Adopted in business process, manufacturing, logistics and service delivery processes	Mainly applied in social sciences including marketing, social processes, and healthcare/epidemic models	Adopted in urban, social, ecological types of systems.

Why to Simulate?

We have far more data, evidence, and computer models to make decisions today, but that also means we have far more information overload and excessive choice proliferation. The number and complexity of choices seem to be growing beyond our abilities to analyze, synthesize, and make decisions. The acceleration of change reduces the time from recognition of the need to make a decision to completion of all the steps to make the right decision. ... Many of the world's decision making processes are inefficient, slow, and ill informed.1

¹The Millennium Project, "15 Global Challenges. Facing Humanity," last modified 2009, http://www.millenniumproject.org/millennium/challeng.html.

www.digifof.org

What is FlexSim?

What is FlexSim?

- FlexSim is a 3D object-oriented simulation software.
- FlexSim is a Stochastic, Dynamic, and Discrete Time simulation software.
- It models, simulates, predicts, and visualizes systems.

What is FlexSim?

Applications

FlexSim Simulation Logic

FlexSim Simulation Logic

🖻 🗁 🛃 💦 🏷 🔻	8 ₽ ▼	- 🕺 - 🔲	撰 3D	🎢 Too	s 🔟 Exce	el 📙 Tree	e 🔄 Scri	ipt 🚽 Da	ashboards	; 33 P	rocess Flov		- 🗌 🕯	3 🚳							
🔣 Reset 🌔 Run 🛛 📓 Stop	▶I St	tep Run Time:	0.00							▼ R	un Speed:	_			4.00	-					
Library	×	撰 Model															•	• ×	Quick Propertie	s	×
🎬 Library 🎢 Toolbox		11111																1/	- Views		
Y		7777																			
- Fixed Resources	^																				4
< Source	_																				2
🥮 Queue																					\succ
Processor																					
🚸 Sink																			- View Sett	ngs	
🐨 Combiner																			Working Mode	-	
🌾 Separator																			Working Mode		Ť
👐 MultiProcessor																			Perspective	Projection	
🗊 Rack																			Show Conne	ctions	
SasicFR BasicFR																			Snap to Grid		
– Task Executers																		\rightarrow	Snap to Bad	kground	
((o)) Dispatcher																			Show Grid		
kan TaskExecuter		T T																	Show Names		~
🔏 Operator																			Color Scheme		
💐 Transporter																		$\langle \rangle$	Blueprint		~
Elevator																					
🔏 Robot																			More	View Settings.	
Crane																			Save S	ettings as Defa	ault
🚽 ASRSvehicle																			Capture V	iew	
BasicTE																			Width	Height	
Travel Networks		1																	1920	1080	
** NetworkNode	_	+++																-	(Capture View	
TrafficControl																		$\left(-\right)$			
- Conveyors																					
Straight Conveyor	_																				
Curved Conveyor																					
] Join Conveyors																					
Decision Point	×																				16

FlexSim objects

Simple Manufacturing Process: 3D Model

Simple Manufacturing Process: Process Flow

Shared Assets

Task Creation

Transport Tasks

Simple Manufacturing Process: Adding detail

Tutorials FlexSim

Learning FlexSim

Applied Simulation: Modeling and Analysis using FlexSim

- Objects' properties
- Objects' Statistics
- Objects interconnections
- Arrival Style (i.e. Interarrival time)
- Processing time

Important Concepts:

• Task executers (transportation)

- Product properties (i.e., type, color)
- Scalation of production (i.e. Multiple processors' types)

- Task executers coordination (i.e. Dispatcher)
- Item List
- Global Tables (i.e., Process time, Process steps)
- Job-shop production sequencing
- Warehousing (i.e. Rack)

- Performance Measurement (i.e., Dashboard).
- Machine Failures (i.e., MTBF, MTTR).
- Group of Resources

🎮 Simula	ation Experiment Contr	ol							_	L) ×	<
Scenarios	Performance Measures	Experiment Run	Optimizer Design	Optimizer Ru	n Optimiz	er Results A	dvanced					0
Variables	🖶 🗕 🗙 🏌 🌡	Scenarios 🚽	⊧ 🗙 🖛 ⇒			Choose defau	lt reset scenar	rio:	None		`	~
	Variable			5	cenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scen	ario 6	
Num. Ope	erators 1 Nr TEs in Team	/Dispatcher 1		1	L	2	3	4	5	6		
Num. Ope	erators 2 Nr TEs in Team	/Dispatcher2		1	L	2	3	4	5	6		
🔨 Perform	ance Measure Results				_							
erformance I	Measures Dashboard Statist	ics Console Output										
Throughput	~	Replications Plot	∨ 🗹 Data 🗹	Box Plot 🗌 Mea	n 90% Conf	idence 🗸 🗸	and Dearfy					
		Throug	ghput				~ Pent	ormance iviea	sure Result	\$		
110							Performa	nce Measures	Dashboard	Statistic	s Conso	le
100		_ •		<u> </u>	•		Through	put		\sim	Data Sum	ıma
	Т.		⁺.⊨		*.E	, 1					r	т
90	·•==	L.	, . .	•	• •	L .			Me	an (9	0% Co	»n
80								Scenari	o1 51	.6 <	54.4	~
70		•						Scenari	o 2 82	.3 <	85.8	~
60 🔸	Τ•							Scenari	o 3 91		93.8	-
50								Scenari	o4 91	.5 <	95.9	<
	⊥ •							Scenari	o 5 91	.5 <	95.9	~
40 <u>So</u>	enario 1 Scenario 2	Scenario 3	Scenario 4	Scenario S	5 Sce	nario 6		Scenari	o6 91	.5 <	95.9	-
	% - 75% I Min - Max											
0		Report	Preferences	Generate Repo	ort 🔻	Close						

- Statistics Collector
- Design of Experiments

🎮 Performance Measure R	esults							_		×		
Performance Measures Dash	board Stati	stics	s Conso	le Ou	tput							
Throughput	~	1	Data Sum	mary	~ ~	Mean Based on	90% Confiden	ce 🗸				
Throughput												
Mean (90% Confidence) Sample Std Dev Min Max												
Scenario 1	51.6	<	54.4	<	57.2	4.9	44.0	62.0				
Scenario 2	82.3	<	85.8	<	89.3	• 6.1	71.0	95.0				
Scenario 3	91.0	<	93.8	<	96.6	4.8	85.0	103.0)			
Scenario 4	91.5	<	95.9	<	100.3	7.5	85.0	107.0)			
Scenario 5	91.5	<	95.9	<	100.3	7.5	85.0	107.0)			
Scenario 6	91.5	<	95.9	<	100.3	7.5	85.0	107.0)			