
www.omilab.org

Conceptual Modelling:
Methods, Tools, and Application

OMiLAB Training Module 5

Foundation

1

www.omilab.org

• Introduction to the foundation of conceptual modelling and metamodeling
as a realization paradigm

• Differentiate Modelling Tools from Drawing Tools

• Differentiate General Purpose Modelling Languages from Domain-
specific Modelling Languages

• Understanding Modelling Tool Implementation and Customization

– Metamodelling Platforms

– ADOxx Metamodelling Platform

– Model Interoperability

– Agile Modelling Method Engineering (AMME)

2

Learning Goals

• The goal of this module is to provide a proper understanding of the foundations of
conceptual modelling methods, tools, and applications.

• Three major aspects are covered:
• 1. What is the difference between a modelling tool and a drawing tool
• 2. What is the conceptualization of a modelling method and what methods

are available to help in the conceptualization?
• 3. What kind of operations can be added to and executing in combination

with a conceptual modelling tool.

2

www.omilab.org

WHAT IS THE DIFFERENCE BETWEEN A
MODELLING AND A DRAWING TOOL?

3

3

www.omilab.org 4

IT-based Drawing Tools

IT-based Drawing Tools Resulting Representation

Stencils, Forms

Example IT-based Drawing Tools: Photoshop, Gimp, PowerPoint, …

„Diagram“

Drawing area

• This slide shows a conventional IT-based drawing tool like PowerPoint and Gimp
• When using such tools, one can easily create drawings which look are nice looking

4

www.omilab.org

Model

Predefined
Elements &
Relations

Product

Process

Realized by

Product X

Process
A

Process
B

Process
C

<?xml version=“1.0”?>
<model>

<product>
<name>Product X</name>…

</product>
<process>

<name>Process A</name>…
…

Graphical
Representation

Formal
Representation

IT-based Modelling Tools

5

IT-based Modelling Tools

Drawing area

Product X

Process
A

Process
B

Process
C

Example IT-based Modelling Tools: Bee-Up, StarUML, Adonis CE, ARIS Express …

• When now moving toward IT-based Modelling Tools, we can surely also create nice
drawings

• However, now we have, aside from the graphical representation, also a formal
representation

• The modelling tools does not store a product as a colored circle but as an instance of
the concept product of a modelling language

5

www.omilab.org

Model
• Creation of image files e.g.

JPG, SVG, EMF
• Dynamic visualization of

attribute values
• Printed reports
• Etc.

• Machine processing using
algorithms

• Queries
• Transformations into other

formats, e.g. XMI, DOCX,
XLS, etc.

• Transformations into other
modelling languages

• Simulation
• Etc.

6

IT-based Modelling Tools

Al
go

rit
hm

s
&

M
ec

ha
ni

sm
s

Product X

Process
A

Process
B

Process
C

<?xml version=“1.0”?>
<model>

<product>
<name>Product X</name>…

</product>
<process>

<name>Process A</name>…
…

Graphical
Representation

Formal
Representation

• Because we are using a Modelling Tool we can not only look at and print the
models/diagrams

• We can also apply mechanisms & algorithms on them as they have all the modelling
language information encoded in the formal representation

• Such processing of model information would not be possible with drawing tools like
PowerPoint

6

www.omilab.org 7

Drawing- vs. Modelling Tools – Example (1)

• Drawing Tool • Modelling Tool

• A further distinction can be made when looking at the properties of the modelled
constructs

• On the left side, using a drawing tool, we can edit the appearance of the construct,
whereas

• On the right side, using a modelling tool, we can edit modelling language properties
that further specify the semantics of an element, in this example of a BPMN task

7

www.omilab.org 8

Drawing- vs. Modelling Tools – Example (2)

Quelle: OMG (2011) Business Process Model and Notation v2.0, www.omg.org

• Drawing Tool • Modelling Tool

X

• Another big difference comes when thinking about the validity of the models
• In tools like PowerPoint one can naturally do whatever he/she thinks is correct, e.g.,

you can connect everything with everything.
• In contrast, modelling tools are aware of the grammatic rules of the modelling

language syntax. As such they won’t allow invalid combinations like connecting a
BPMN start event with another BPMN start event as this is prohibited by the BPMN
specification (see at the bottom).

8

www.omilab.org

• The dividing line between the drawing tool and the modelling tool is not
always hard and therefore the distinction is not always generally valid.

• Drawing Tools are good, e.g.:
– Dia
– draw.io
– yEd

• You should know their purpose and aim
• Sometimes "only" diagram exchange is necessary

– Everyone can work with a .png or .pdf.
– With .bpmn, .adl, and .xmi it is getting harder.

• But: Which software can generate SQL code from an entity relationship
diagram that is described in .png or .pdf?
– Drawing tools are generally very limited in their model value and thus only provide

limited (no) mechanisms & algorithms that process the modelled information.

Drawing- vs. Modelling Tools – Differences

9

• Make sure to also give credits to the drawing tools in those aspects they are good in
• However, the different purposes and capabilities of the two categories of tools should

still be emphasized!
• Especially when considering model processing by mechanisms & algorithms, one

needs to use proper modelling tools!

9

www.omilab.org

WHAT KINDS OF MODELLING
METHODS EXIST?

GPML vs. DSML

10

10

www.omilab.org

• General Purpose Modelling Language (GPML)
– Mostly standardized

• Widely adopted
• Limited flexibility

– UML, BPMN, …
– e.g. BPMN was developed for processes, but can be used by any industry/sector

• Domain-specific Modelling Language (DSML)
– DSMLs are designed specifically for one domain

• Applicability in other domains is limited or even not valuable
– High flexibility

• GPML can be adopted to specific domains (e.g. UML profiles)

GPML vs. DSML

11

Increasing
Domain
Specificity

Domain specificity is also
reflected in notation and

attributes

• This slide compares general purpose modelling languages with domain-specific ones
• Make sure to emphasize that both are highly relevant for different reasons

• GPML, mostly standardized, have wide adoption and establish industry-wide
communication

• DSML, in contrast, aim for domain-specificity in all modelling method
components

• Can help in very specific problems, esp. also related to code
generation

• The figure at the bottom shows, how also GPML languages can be enriched with
domain-specificity

11

www.omilab.org

• The notation of GPMLs is often (by design)
not intuitive
– How would you design an intuitive notation

for a concept ‘Class’ in UML?

• GPMLs are typically insufficient

• GPMLs sacrifice specificity for reusability
across domains)

• GPMLs evolve slowly and rigidly, rather than
agilely (esp. standards)

• GPMLs aim to establish a common level of
abstraction

• GPMLs are often languages, not methods

General Purpose Modeling Languages – Limitations

12

• This slide shows domain-specificity in the notation and stresses, that domain-specific
notations are mmostly more visually expressive (allow for intuitive interpretation)

• Exmaple question to the audience: How would you design an intuitive notation for
the UML Class concept?

• The rest of the slide aims to point to other drawbacks of GPMLs

12

www.omilab.org

Like software, the requirements of model users are continually changing:

• Syntax-based

– "I need an arrow to link business activities to their locations"

• Semantics-based

– "I need to assign business activities to locations of several types"

• Notation-based

– "I need visual anchors in the form of an L, to indicate that a business activity was
linked to a location"

• Mechanisms & Algorithms-based

– "I need certain parts of my models to be serialized according to my vocabulary"

Origin of Need for Domain-specific Modelling Languages

13

• This slide exemplifies a few sources for domain-specific requirements
• It further shows, that domain-specificity can relate to all components of a modelling

method

13

www.omilab.org

HOW CAN I DESIGN A NEW (DSML /
GPML) MODELLING METHOD?

14

14

www.omilab.org

• „Agile Enterprise“ is an umbrella term covering new challenges derived
from increasingly dynamic needs that must be addressed by enterprises

• Used Modeling Languages have to be adopted

• Agile Modelling Method Engineering (AMME) is a framework for
supporting continuous changes of modeling languages

• The scope of the AMME framework is to describe the basic elements and
their relations of a modeling method as well as its algorithms

15

Agile Modelling Method Engineering (AMME)

• As enterprises need to agilely adopt to changing requirements and circumstances, so
do modelling methods

• AMME is a framework that borrows concepts from agile software engineering and
adopts them for the conceptualization of new modelling methods

15

www.omilab.org

Core motivator:
All requirements can not be known from the start

(Just like software requirements) modeling requirements are changing

Motivators for AMME

Causes for changes

 Modelling needs evolve as users become familiar with modeling (and an initial
prototype)

 Change requests for ”conceptual model”-aware systems propagate into new
modelling requirements

 Gradual understanding of a new domain (in domain-specific modelling)

 Gradual need for deeper specialization of concepts

16

• Describe the core motivators for adopting AMME

16

www.omilab.org

Characteristics of agile method adaptations

Characteristic Meaning

Adaptability
The ability to modify existing concepts/properties
(to meet new requirements)

Extensibility
The ability to add new concepts/properties to the existing
metamodel

Integrability
The ability to add bridging concepts/properties in order to
integrate existing building blocks

Operability
The ability to provide means (functionality) of operating on
models (e.g. simulation, transformation)

Usability
The ability to provide satisfying user interaction and model
understandability

17

• In response to the motivators/requirements discussed previously, AMME adheres to
some specific characteristics in response

• The characteristics all relate to specific parts of the modelling method with a focus on
syntactic aspects, i.e., changes of the metamodel

17

www.omilab.org

What is Agile Modelling Method Engineering?

The Components of Modelling
Methods

•Iterative: repeat activities and potentially
revisit same work products
•Incremental: each successive version is
usable and builds upon previous version
•Version control: enabler for other Agile
practices
•Team: small group of people assigned to the
same project with shared accountability

**http://guide.agilealliance.org/subway.html
**see also http://agilemanifesto.org/principles.html

+ The Fundamentals of Agile
Development**

18

• AMME is build on two pillars
• The Components of Modeling Methods and
• The Fundamentals of Agile Development

18

www.omilab.org

The Agile Modelling Method Engineering Framework

Application
Environment

Metamodelling Cycle Knowledge &
Resource Repository

End-users
• Roles
• Skills
• Knowledge

Organizations
• Processes
• Strategies
• Resources
• Motivators
• Capabilities

Systems
• Model-aware

systems
• Enterprise

architecture

Foundations
• Conceptual

Framework
• Formalisms (FDMM)
Technology
• Metamodelling

platforms
• Platform-independent

MMDSL
Reference content
• Reference models
• Reference

metamodels
• Algorithms
Methodologies
• Evaluation methdology

Models that
Use Concepts

Models of
ConceptsModelling

requirements
&

Domain
knowledge

Reusable
resources

&
Lessons
learned

Accumulate
(goal: reuse)

Apply
(goal: usefulness)

Conceptualization
Lifecycle

19

• This slide shows the bigger picture of AMME tat incorporates the Application
Environment and the Knowledge & Resource Repository

• Requirements and domain knowledge are derived from the application environment
• Reusable resources and lessons learned from previous modelling method

conceptualization projects are derived from the Knowledge & Resource Repository
• Within the Metamodeling Cycle, both inputs are combined while creating a model of

concepts (i.e., a metamodel)
• This metamodel is then evaluated through instantiation, thereby creating models that

use concepts (of the metamodel)
• A feedback loop closes the cycle and enables continuous improvement

19

www.omilab.org

The "Produce-Use" Metamodelling Cycle

Models that Use Concepts
(e.g., Domain-specific models,

Enterprise models)

Models of Concepts
(e.g., Meta-models,
Models of domain

knowledge) Instantiate to U
se

Ev
al

ua
te

 to
 P

ro
du

ce

Models that Use
Concepts

Models of
Concepts

Conceptualization
Lifecycle

20

• This slide further explains the Produce-Use Cycle between
• The Models of Concepts (e.g., metamodels), and
• The models that use concepts (i.e., the concrete instantiated model)

20

www.omilab.org

The Conceptualization Lifecycle

Models that Use
Concepts

Models of
Concepts

Conceptualization
Lifecycle

Conceptualization Lifecycle by Karagiannis (2015): Agile Modeling Method Engineering

21

• Drilling once more deeper, we can see the conceptualization lifecycle in greater detail
• This slide show the different phases that form part of the AMME lifecycle
• For each phase the Enables are depicted and the relationships to other AMME phases

are shown
• The small arrows also show feedback loops within AMME

21

www.omilab.org

1. Create
– Concerns the specification of requirements of a modeling method

2. Design
– A meta-model addressing the identified requirements is to be designed

3. Formalize
– Formally specifying relevant parts of the modeling method

4. Develop
– Actual development of a corresponding modeling tool

5. Deploy
– Deployment of the modeling tool, most probably on an open basis to enable

adoption and evaluation by users

All phases come with continuous evaluation efforts to test
– The quality of the phase’s outcome, and
– The fitness of the outcome to the overall modelling method

22

The Conceptualization Lifecycle Phases

• On this slide now a more detailed description of each phase is given
• A further emphasize is given on the evaluation (the blue arrows on the previous slide)

that ensure the quality of the produced artifact

22

www.omilab.org

HOW CAN I IMPLEMENT A
MODELLING TOOL?

23

23

www.omilab.org

• A metamodel allows explicit definition of the concepts constituting a
modelling language

• Explicit metamodels leverage language extensibility

• Enable validation of models

• Management of models within repositories

• Provision of an exchange format (e.g., mapping from the meta-
constructs to XML)

In our scope now:

• Utilization of model processing functionality (developed on
metamodel level, executed on model level)

 Enable tool development (metamodeling platforms)

Why we build metamodels

• This slide motivates why metamodel are built
• In the scope: the model processing and tool development support by metamodels

which will be further detailed in the next slides

24

www.omilab.org

• Provide a meta-metamodel with a rich set of pre-defined concepts and
functionality attached to these concepts

• Raise the abstraction level of modelling language development

• Enable efficient realization of (domain-specific) modelling languages

• Replace most implementation efforts by configuration and customization of pre-
defined concepts and functionality

– Efficiency, Effectiveness, and Quality gains

• Take care of method-independent requirements like user, model, access, data
management, as well as the visualization of the models and the user
interactions.

• Different metamodeling platforms exist1

– ADOxx2, Eclipse Modeling Framework, MetaEdit+, …

2 will be introduced in more detail now…

Metamodeling Platforms

25

1 Visic, N., Fill, H. G., Buchmann, R. A., Karagiannis, D. (2015). A domain-specific language for modeling method definition: From
requirements to grammar. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 286-
297). IEEE.

• When the realization of modellign tools is considered, one needs to think about
metamodelling platforms.

• Desribe the meaning and the purpose of metamodelling platforms
• Particularly start emphasizing the efficiency in tool development that such platform

provide in comparison to building modelling tools from scratch

25

www.omilab.org

HOW DOES THE ADOXX SUPPORT THE
IMPLEMENTATION OF MODELLING TOOLS?

26

26

www.omilab.org

developed in

Metamodel

Instance of

ADOxx Developer

Metamodel
Developer

C++

ALL

ADL
created by

developed by

developed by

developed by

MM – Tool
Development
Part

described in

developed in

Instance of

ADOxx
Meta2 Model

Modeller

ADOxx
Metamodel

Inherited from

ADOxx Metamodeling Stack

Source: adoxx.org
27

Method-specific
Metamodels

Models

• Describe the three levels and the associated roles involved in the ADOxx
metamodeling stack

• The levelled structure is though also valid for other prominent metamodeling
platforms

• On top is the ADOxx developer who implements changes on the ADOxx meta-
metamodel

• An instance of this metmodel is then provided to the metamodel developer as ADOxx
Metamodel

• The metamodel developer then introduces his/her method-specific metamodel by
inheriting from the ADOxx metamodel concepts

• Eventually, the modeler instantiates the method-specific metamodel while creating
models.

• This slide also shows the different quantities on the different meta-levels, i.e.,
• 1 ADOxx meta-metamodel
• 1 ADOxx metamodel
• 1..* method-specific metamodel – all inheriting from the 1 ADOxx metamodel
• 1..* created models, each of which instanciated from one particular

metamodel

27

www.omilab.org

Modeller

ADOxx Developer

Metamodel
Developer

ADOxx Metamodeling: Separation of Concerns

28

• Implements generic mechanisms & algorithms on meta-metamodel level
• Examples:

 Generic model export format
 Generic path analysis for graph-based modelling languages
 Generic search functionality within a model

• Realizes generic mechanisms & algorithms by mapping them to
concrete (domain-specific) metamodel concepts

• Examples:
 Realize model simulation for a domain-specific process

modelling language
 Realize the export functionality for a specific modelling method

• Executes the provided mechanisms & algorithms
• Parameterizes the mechanisms & algorithms with aspects of the System

under Study and/or the modelling project context
• Examples:

 Parameterization of generic search by DSML concepts
 Parameterization of model queries

• This slide further shows the separation of concerns employed by ADOxx
• It should further emphasize that lots of the implementation efforts are taken care of

by the ADOxx developer
• What is left for metamodel developer and modeller is mostly customization and

parameterization of pre-defined functionality and algorithms
• Emphasize the mitigating role of the metamodel developer who

• Translates modeller requirements into metamodel design decisions, and
• Provides metamodel development feedback and requests for meta-

metamodel functionality to the ADOxx developer

28

www.omilab.org

https://www.adoxx.org/live/adoxx-development-tools

a) Provision and Webinar for Java – DSL for ADOxx
https://www.adoxx.org/live/adoxx-development-tools

b) Provision of Meta Model Design Environment:
https://www.adoxx.org/live/metamodel-designer

c) Provision of GraphRep Repository:
https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-
/wiki/GRAPHREP+Repository/FrontPage

d) Provision of Powerpoint (EMF) to ADOxx (LEO) Converter:
https://www.adoxx.org/live/emf2leo-converter-service

e) Collection of Scenarios and tool add-ons https://www.adoxx.org/live/faq/-
/message_boards/category/64152

ADOxx Development Support & Tools

29

• The ADOxx community also provides a rich set of further development support and
development tools

• Pick one or two to explain in greater detail

29

www.omilab.org

• MS Visual Studio Extension for ADOxx AdoScript

• Features
– Syntax highlighting

– Code snippets

– Comment toggling

– Code block folding

– Specific editors

30

ADOxx AdoScript Editor

https://marketplace.visualstudio.com/items?itemName=ADOxxorg.adoxx-adoscript

Licensed by CC BY-SA

• When aiming to apply metamodeling, one also needs to consider the realization of
mechanisms & algorithms

• In the ADOxx world, M&A are realized wich AdoScript
• This slide introduced the ADOxx AdoScript editor which is available freely as an MS

Visual Studio plugin and supports efficient development of AdoScript code

30

www.omilab.org 31

ADOxx Interoperability Services

Web Simulation Service
https://www.adoxx.org/live/adoxxweb-simulation-

details

ADOxx

ADOxxWEB API
https://www.adoxx.org/live/adox

x-web-api-details

ADOxx Dashboard
https://www.adoxx.org/live/dashboard-

details

…

…

• This slide explains four core services that enable interoperability for ADOxx based
modelling tools

• The ADOxxWEB API (top left) enables the invocation of WebServices within ADOxx
and also to connect to a running ADOxx instance through a HTTP Requests

• The Web Simulation service (top right) enables a lightweight and handy integration of
a web dashboard to visualize ADOxx simulation results in an appealing way

• The ADOxx Dashboard service (bottom left) similarly enables reports derived from
analyzing ADOxx models in an appealing way

• The RDF Transformation service (bottom right) enables the efficient serialization of
ADOxx model contents in RDF format

• Emphasize that there exist much more, indicated by the three dots (…)
Picture licensed by CC BY-SA

31

www.omilab.org 32

Modelling Tool Interoperability: A CityBike Case

Open Data

Based on Geo-location:
• Points of Interest

Web Simulation Service
https://www.adoxx.org/live/adoxxweb-

simulation-details

Load PoI into conceptual model

Calculate PoI
Route

Compute
CityBike
Demand

Call Web
Simulation

https://www.adoxx.org/live/faq/-/message_boards/message/719667

• This slide shows one example of interoperability based on the CityBike case
• The case uses openly available governmental data and loads it into the modelling

environment
• It then processes the information by executing internal services (route planning, bike

demand planning) and integrating external services like the web simulation

32

www.omilab.org

• What are drawing tools suitable for?

• What are modeling tools suitable for?

• Can you describe differences between modelling tools and drawing tools?

• What is a General Purpose Modelling Language and how does it differ
from a Domain-specific Modelling Language?

• Where can domain-specificity in DSMLs be considered?

• What are motivators for DSMLs?

• Can you describe the aim of the Agile Modelling Method Engineering
methodology?

• Can you describe the Agile Modelling Method Engineering lifecycle?

• What is the benefit of using the ADOxx AdoScript editor?

33

Self-control questions

33

www.omilab.org

• ADOxx Meta-Modelling platform: http://www.adoxx.org/

• ADOxx AdoScript editor:
https://marketplace.visualstudio.com/items?itemName=ADOxxorg.adoxx-adoscript

• Efendioglu, N., Woitsch, R., Utz, W. (2016) A Toolbox Supporting Agile Modelling
Method Engineering: ADOxx.org Modelling Method Conceptualization Environment.
PoEM 2016: pp. 317-325

• Karagiannis, D. (2015) Agile modeling method engineering. Panhellenic Conference on
Informatics 2015: pp. 5-10

• Karagiannis, D., Kühn, H.: „Metamodelling Platforms“. In Bauknecht, K., Min Tjoa, A.,
Quirchmayer, G. (Eds.): Proceedings of the Third International Conference EC-Web
2002 – Dexa 2002, Aix-en-Provence, France, LNCS 2455, Springer, Berlin/Heidelberg,
p. 182 ff.

• Kern, H. (2016). Model interoperability between meta-modeling environments by using
M3-level-based bridges (Doctoral dissertation, Universität Leipzig).

• Visic, N., Fill, H. G., Buchmann, R. A., Karagiannis, D. (2015). A domain-specific
language for modeling method definition: From requirements to grammar. In 2015 IEEE
9th International Conference on Research Challenges in Information Science (RCIS)
(pp. 286-297). IEEE.

34

References

34

