
Public ULBS_01 - Workplace safety –

Employees emotion recognition

 Page 1

Project Title:

THE FOF-DESIGNER:
DIGITAL DESIGN SKILLS FOR FACTORIES OF THE FUTURE

Project Acronym:

DigiFoF

Grant Agreement number:
2018-2553 / 001-001

Project Nr. 601089-EPP-1-2018-1-RO-EPPKA2-KA

Subject:
ULBS_01 - Workplace safety – Employees emotion recognition

Dissemination Level:

Public

Lead Organisation:
ULBS

Project Coordinator:

ULBS

Trainers:
Eng. Valentin Fleaca

Revision Preparation date Period covered Project start date Project duration

V1 October 2019 Month 16-36 01/01/2019 36 Months

This project has received funding from the European Union’s EACEA Erasmus+ Programme
Key Action 2 - Knowledge Alliances under the Grant Agreement No 2018-2533 / 001-001

1

Contents
1. Introduction to Python & OpenCV ... 2

1.1 Laboratory structure .. 3

1.2 Setting up the environment.. 3

1.3 Theoretical background .. 7

1.4 Python vs C++ .. 8

Compilation vs Virtual Machine ... 8

Syntax differences ... 10

Object-Oriented Programming ... 13

1.5 Python vs Java .. 14

1.6 Exercises .. 15

1.7 OpenCV .. 16

2. Face detection ... 18

2.1. Laboratory structure .. 19

2.2. Theoretical background .. 19

Haar feature-based cascade classifiers ... 19

Haar features extraction .. 20

Integral Images concept ... 21

AdaBoost ... 22

Cascade of Classifiers ... 22

Face detection with OpenCV .. 23

3. Detecting facial landmarks ... 25

3.1 Laboratory structure .. 26

3.2 Theoretical background .. 26

4. Recognizing facial emotions ... 29

4.1 Laboratory structure .. 30

4.2 Theoretical background .. 30

2

1. Introduction to Python & OpenCV

Training specification Explanation

Organizer Valentin Fleaca

Training Topic Introduction to Python & OpenCV

Training objectives
 getting familiar with Python

 handling basic OpenCV API calls

Method individual work

Target groups
 master students (Computer Science)

 software engineers

Recommended composition Individuals with basic programming knowledge

Recommended size of groups 8 to 12

Training duration 2 hours

Mode of tutoring Expert input

Mode of provision Classroom

Tools and resources to be used

(technological-support tools)
Computer room with Windows installed

Recommended preparation Getting familiar with Python and OpenCV

Modes of working in teams Collective work with distributed role

Communication and cooperation

mode
Informal communication

Necessary abilities to tackle the

tasks of open problems
Ability to listen and ask questions when something is not clear

Knowledge prerequisites Basic programming knowledge

3

1.1 Laboratory structure

Time (minutes) Objective Performed by?

5 Presenting the objectives and

structure of this laboratory

Teacher

5 Downloading and installing

PyCharm & Python

Teacher and students

10 Installing OpenCV, NumPy,

SciPy

Teacher and students

15 Python vs C++ vs Java Teacher

30 Python language exercises Students

35 OpenCV usage Teacher and Students

1.2 Setting up the environment

 Download Python 3.7.4 for Windows x64

o https://www.python.org/downloads/release/python-374/

https://www.python.org/downloads/release/python-374/

4

 Install Python and make sure to check „add python to PATH”

 Download and install PyCharm Community edition

https://www.jetbrains.com/pycharm/download/#section=windows

o Make sure to check the “Update PATH variable” option

https://www.jetbrains.com/pycharm/download/#section=windows

5

 Open PyCharm

o Create a new project

o Select the project interpreter as a new Virtualenv environment and select

python 3.7 as the base interpreter

6

o Right click on the newly created project and create a new file called “main.py”

o Go to File -> Settings (Ctrl + Alt + S) -> Project Interpreter -> Install (Alt +

Insert) -> Search and install:

 “opencv-python”

 “numpy”

 “scikit-learn”

 “cmake”

 “dlib”

7

o In main.py write:

o Right click on main.py and click “Run ‘main’

1.3 Theoretical background

Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics. Its high-level built in data structures, combined with dynamic typing and dynamic

binding, make it very attractive for Rapid Application Development, as well as for use as a

scripting or glue language to connect existing components together.

An interpreted language is any programming language that isn't already in "machine code"

prior to runtime. Unlike compiled languages , an interpreted language's translation doesn't

happen beforehand. Translation occurs at the same time as the program is being executed.

For compiled languages, static semantics essentially include those semantic rules that can

be checked at compile time. Examples include checking that every identifier is declared before

it is used (in languages that require such declarations) or that the labels on the arms of a case

statement are distinct. The dynamic semantics (also known as execution semantics) of a

language defines how and when the various constructs of a language should produce a program

behavior. There are many ways of defining execution semantics.

When we declare a variable in C or alike languages, this sets aside an area of memory for

holding values allowed by the data type of the variable. The memory allocated will be

interpreted as the data type suggests. If it’s an integer variable the memory allocated will be

read as an integer and so on. When we assign or initialize it with some value, that value will

get stored at that memory location. At compile time, initial value or assigned value will be

checked. So we cannot mix types. Example: initializing a string value to an int variable is not

allowed and the program will not compile.

But Python is a dynamically typed language. It doesn’t know about the type of the variable

until the code is run. So declaration is of no use. What it does is, It stores that value at some

memory location and then binds that variable name to that memory container. And makes the

8

contents of the container accessible through that variable name. So the data type does not

matter. As it will get to know the type of the value at run-time.

When compiler is not able to resolve the call/binding at compile time, such binding is

known as Dynamic or late Binding. Method Overriding is a perfect example of dynamic

binding as in overriding both parent and child classes have same method and in this case the

type of the object determines which method is to be executed. The type of object is determined

at the run time so this is known as dynamic binding.

Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost

of program maintenance. Python supports modules and packages, which encourages program

modularity and code reuse.

1.4 Python vs C++

Compilation vs Virtual Machine

In C++, you use a compiler that converts your source code into machine code and

produces an executable. The executable is a separate file that can then be run as a stand-alone

program:

This process outputs actual machine instructions for the specific processor and

operating system it’s built for. In this drawing, it’s a Windows program. This means you’d

have to recompile your program separately for Windows, Mac, and Linux:

9

You’ll likely need to modify your C++ code to run on those different systems as well.

 Python, on the other hand, uses a different process, it runs each time you execute your

program. It compiles your source just like the C++ compiler. The difference is that Python

compiles to bytecode instead of native machine code. Bytecode is the native instruction code

for the Python virtual machine. To speed up subsequent runs of your program, Python stores

the bytecode in .pyc files:

If you’re using Python 2, then you’ll find these files next to the .py files. For Python 3,

you’ll find them in a __pycache__ directory.

The generated bytecode doesn’t run natively on your processor. Instead, it’s run by the

Python virtual machine. This is similar to the Java virtual machine or the .NET Common

Runtime Environment. The initial run of your code will result in a compilation step. Then, the

bytecode will be interpreted to run on your specific hardware:

10

As long as the program hasn’t been changed, each subsequent run will skip the

compilation step and use the previously compiled bytecode to interpret:

Interpreting code is going to be slower than running native code directly on the

hardware. So why does Python work that way? Well, interpreting the code in a virtual machine

means that only the virtual machine needs to be compiled for a specific operating system on a

specific processor. All of the Python code it runs will run on any machine that has Python.

Syntax differences

 The first thing most developers notice when comparing Python vs C++ is the

“whitespace issue.” Python uses leading whitespace to mark scope. This means that the body

of an if block or other similar structure is indicated by the level of indentation. C++ uses curly

braces ({}) to indicate the same idea.

 Instead of relying on a lexical marker like ; to end each statement, Python uses the end

of the line. If you need to extend a statement over a single line, then you can use the backslash

(\) to indicate that. (Note that if you’re inside a set of parentheses, then the continuation

character is not needed.)

 The way you’ll use Boolean expressions changes slightly in Python vs C++. In C++,

you can use numeric values to indicate true or false, in addition to the built-in values. Anything

that evaluates to 0 is considered false, while every other numeric value is true.

Python has a similar concept but extends it to include other cases. The basics are quite similar.

The Python documentation states that the following items evaluate to False:

Constants defined as false:

o None

o False

Zeros of any numeric type:

11

o 0

o 0.0

o 0j

o Decimal(0)

o Fraction(0, 1)

Empty sequences and collections:

o ''

o ()

o []

o {}

o set()

o range(0)

C++ OPERATOR PYTHON OPERATOR

&& and

|| or

! not

& &

| |

 Unlike Python, C++ has variables that are assigned to a memory location, and you must

indicate how much memory that variable will use:

In Python, all objects are created in memory, and you apply labels to them. The labels

themselves don’t have types, and they can be put on any type of object:

12

Python has a language feature called list comprehensions. While it’s possible to emulate

list comprehensions in C++, it’s fairly tricky. In Python, they’re a basic tool that’s taught to

beginning programmers.

One way of thinking about list comprehensions is that they’re like a super-charged

initializer for lists, dicts, or sets. Given one iterable object, you can create a list, and filter or

modify the original as you do so:

This script starts with the iterable range(5) and creates a list that contains the square for

each item in the iterable. It’s possible to add conditions to the values in the first iterable:

13

While it’s true that you can create a vector of the squares of the odd numbers in C++,

doing so usually means a little more code:

C++ has a rich set of algorithms built into the standard library. Python has a similar set

of built-in functions that cover the same ground.

The first and most powerful of these is the in operator, which provides a quite readable test to

see if an item is included in a list, set, or dictionary:

Object-Oriented Programming

Inheritance between classes works similarly in Python vs C++. A new class can inherit

methods and attributes from one or more base classes, just like you’ve seen in C++. Some of

the details are a bit different, however.

14

Base classes in Python do not have their constructor called automatically like they do

in C++. This can be confusing when you’re switching languages.

Multiple inheritance also works in Python, and it has just as many quirks and strange

rules as it does in C++.

Similarly, you can also use composition to build classes, where you have objects of one

type hold other types. Considering everything is an object in Python, this means that classes

can hold anything else in the language.

Python has no concept of access modifiers for classes. Everything in a class object is

public. Thus, Python has far weaker encapsulation support than C++.

Python does not have operator overloads, but it has its own garbage collection.

Feature Python C++

Faster execution X

Cross-Platform Execution X

Single-Type Variables X

Multiple-Type Variables X

Comprehensions X

Rich set of Built-In Algorithms X X

Static Typing X

Dynamic Typing X

Strict Encapsulation X

Direct Memory Control X

Garbage Collection X

1.5 Python vs Java

Python programs are generally expected to run slower than Java programs, but they also

take much less time to develop. Python programs are typically 3-5 times shorter than equivalent

Java programs. This difference can be attributed to Python's built-in high-level data types and

its dynamic typing. For example, a Python programmer wastes no time declaring the types of

arguments or variables, and Python's powerful polymorphic list and dictionary types, for which

rich syntactic support is built straight into the language, find a use in almost every Python

program. Because of the run-time typing, Python's run time must work harder than Java's. For

15

example, when evaluating the expression a+b, it must first inspect the objects a and b to find

out their type, which is not known at compile time. It then invokes the appropriate addition

operation, which may be an overloaded user-defined method. Java, on the other hand, can

perform an efficient integer or floating point addition, but requires variable declarations for a

and b, and does not allow overloading of the + operator for instances of user-defined classes.

For these reasons, Python is much better suited as a "glue" language, while Java is better

characterized as a low-level implementation language. In fact, the two together make an

excellent combination. Components can be developed in Java and combined to form

applications in Python; Python can also be used to prototype components until their design can

be "hardened" in a Java implementation. To support this type of development, a Python

implementation written in Java is under development, which allows calling Python code from

Java and vice versa. In this implementation, Python source code is translated to Java bytecode

(with help from a run-time library to support Python's dynamic semantics).

1.6 Exercises

A. Sort a list by the last element in each tuple from a given list.

Sample List : [(2, 5), (1, 2), (4, 4), (2, 3), (2, 1)]

Expected Result : [(2, 1), (1, 2), (2, 3), (4, 4), (2, 5)]

B. Find the second smallest number in a list.

Sample List: [1, 1, 1, 0, 0, 0, 2, -2, -2]

Expected Result: 1

C. Find common items from two lists.

Sample Lists:

["Red", "Green", "Orange", "White"]

 ["Black", "Green", "White", "Pink"]

 Expected result: ['Green', 'White']

D. Generate and print a dictionary that contains a number between 1 and n in the

form (x, x * x)

Input: 10

Expected Result: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81, 10: 100}

16

E. Write a function to calculate the geometric sum of n-1

Example:

Expected output: geometric_sum(7) => 1.9921875

F. Count the frequency of words in a file

G. Find the largest prime factor of a given number

The prime factors of 330 are 2, 3, 5 and 11. Therefore 11 is the largest prime

factor of 330.

H. Count the number of letters and digits of a given sequence

Example: hello world! 123

Expected output: Letters 10, Digits 3

1.7 OpenCV

Reading an image using OpenCV:

import cv2

import numpy as np

img = cv2.imread(your_image.jpg')

Displaying the image:

cv2.imshow('image',img)

cv2.waitKey(0)

cv2.destroyAllWindows()

cv2.waitKey() is a keyboard binding function. Its argument is the time in milliseconds. The function

waits for specified milliseconds for any keyboard event. If you press any key in that time, the program

continues. If 0 is passed, it waits indefinitely for a key stroke. It can also be set to detect specific key

strokes like, if key a is pressed etc which we will discuss below.

cv2.destroyAllWindows() simply destroys all the windows we created. If you want to destroy any

specific window, use the function cv2.destroyWindow() where you pass the exact window name as

the argument.

17

Exercises

A. Apply the geometric transformations over an image

B. Apply morphological operations over an image (dilation, erosion)

C. Transform an image to grayscale

D. Count the number of frames in a video

E. Find the center of each shape in the following image (hint: lookup

cv2.findContours)

18

2. Face detection

Training specification Explanation

Organizer Valentin Fleaca

Training Topic Implementing a face detection system

Training objectives
 Face detection in static images

 Face detection in a video stream

Method individual work

Target groups
 master students (Computer Science)

 software engineers

Recommended composition Individuals with basic programming knowledge

Recommended size of groups 8 to 12

Training duration 2 hours

Mode of tutoring Expert input

Mode of provision Classroom

Tools and resources to be used

(technological-support tools)
Computer room with Windows installed

Recommended preparation Getting familiar with Python and OpenCV

Modes of working in teams Collective work with distributed role

Communication and cooperation

mode
Informal communication

Necessary abilities to tackle the

tasks of open problems
Ability to listen and ask questions when something is not clear

Knowledge prerequisites Basic Python and OpenCV understanding

19

2.1. Laboratory structure

Time (minutes) Objective Performed by?

5 Presenting the objectives and

structure of this laboratory

Teacher

25 Face detection: theory Teacher

20 Detecting faces in images Teacher and students

30 Detecting faces in video

sequences

Students

20 Project architecture setup Teacher and students

2.2. Theoretical background

Face detection is a technique that identifies or locates human faces in digital images. A

typical example of face detection occurs when we take photographs through our smartphones,

and it instantly detects faces in the picture. Face detection is different from Face recognition.

Face detection detects merely the presence of faces in an image while facial recognition

involves identifying whose face it is. In this article, we shall only be dealing with the former.

Face detection is performed by using classifiers. A classifier is essentially an algorithm

that decides whether a given image is positive(face) or negative(not a face). A classifier needs

to be trained on thousands of images with and without faces. Fortunately, OpenCV already has

two pre-trained face detection classifiers, which can readily be used in a program. The two

classifiers are:

 Haar Classifier

 Local Binary Pattern Classifier

Haar feature-based cascade classifiers

 Haar-like features are digital image features used in object recognition. They owe their

name to their intuitive similarity with Haar wavelets and were used in the first real-time face

detector. Paul Viola and Michael Jones in their paper titled "Rapid Object Detection using a

Boosted Cascade of Simple Features" used the idea of Haar-feature classifier based on the Haar

wavelets. This classifier is widely used for tasks like face detection in computer vision industry.

Haar cascade classifier employs a machine learning approach for visual object detection

which is capable of processing images extremely rapidly and achieving high detection rates.

This can be attributed to three main reasons:

20

 Haar classifier employs 'Integral Image' concept which allows the features used

by the detector to be computed very quickly.

 The learning algorithm is based on AdaBoost. It selects a small number of

important features from a large set and gives highly efficient classifiers.

 More complex classifiers are combined to form a 'cascade' which discard any

non-face regions in an image, thereby spending more computation on promising

object-like regions.

Haar features extraction

 After the tremendous amount of training data (in the form of images) is fed into the

system, the classifier begins by extracting Haar features from each image. Haar Features are

kind of convolution kernels which primarily detect whether a suitable feature is present on an

image or not. Some examples of Haar features are mentioned below:

 These Haar Features are like windows and are placed upon images to compute a single

feature. The feature is essentially a single value obtained by subtracting the sum of the pixels

under the white region and that under the black. The process can be easily visualized in the

example below.

21

For demonstration purpose, let's say we are only extracting two features, hence we have

only two windows here. The first feature relies on the point that the eye region is darker than

the adjacent cheeks and nose region. The second feature focuses on the fact that eyes are kind

of darker as compared to the bridge of the nose. Thus, when the feature window moves over

the eyes, it will calculate a single value. This value will then be compared to some threshold

and if it passes that it will conclude that there is an edge here or some positive feature.

Integral Images concept

The algorithm proposed by Viola Jones uses a 24X24 base window size, and that would

result in more than 180,000 features being calculated in this window. Imagine calculating the

pixel difference for all the features? The solution devised for this computationally intensive

process is to go for the Integral Image concept. The integral image means that to find the sum

of all pixels under any rectangle, we simply need the four corner values.

This means, to calculate the sum of pixels in any feature window, we do not need to

sum them up individually. All we need is to calculate the integral image using the 4 corner

values. The example below will make the process transparent.

22

AdaBoost

As pointed out above, more than 180,000 features values result within a 24X24 window.

However, not all features are useful for identifying a face. To only select the best feature out

of the entire chunk, a machine learning algorithm called Adaboost is used. What it essentially

does is that it selects only those features that help to improve the classifier accuracy. It does so

by constructing a strong classifier which is a linear combination of a number of weak

classifiers. This reduces the amount of features drastically to around 6000 from around

180,000.

Cascade of Classifiers

 Another way by which Viola Jones ensured that the algorithm performs fast is by

employing a cascade of classifiers. The cascade classifier essentially consists of stages where

each stage consists of a strong classifier. This is beneficial since it eliminates the need to apply

all features at once on a window. Rather, it groups the features into separate sub-windows and

the classifier at each stage determines whether or not the sub-window is a face. In case it is not,

the sub-window is discarded along with the features in that window. If the sub-window moves

past the classifier, it continues to the next stage where the second stage of features is applied.

The process can be understood with the help of the diagram below.

Click ->

face_detection_haarc

ascades.webp

23

Face detection with OpenCV

import cv2

Load the cascade

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

Read the input image

img = cv2.imread('test.jpg')

Convert into grayscale

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Detect faces

faces = face_cascade.detectMultiScale(gray, 1.1, 4)

Draw rectangle around the faces

for (x, y, w, h) in faces:

 cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

Display the output

cv2.imshow('img', img)

cv2.waitKey()

cv2.CascadeClassifier.detectMultiScale parameters are:

 image : Matrix of the type CV_8U containing an image where objects are detected.

 scaleFactor : Parameter specifying how much the image size is reduced at each image

scale.

o

o This scale factor is used to create scale pyramid as shown in the picture.

Suppose, the scale factor is 1.03, it means we're using a small step for resizing,

i.e. reduce size by 3 %, we increase the chance of a matching size with the

model for detection is found, while it's expensive.

 minNeighbors : Parameter specifying how many neighbors each candidate rectangle

should have to retain it. This parameter will affect the quality of the detected faces:

higher value results in less detections but with higher quality.

 flags : Parameter with the same meaning for an old cascade as in the function

cvHaarDetectObjects. It is not used for a new cascade.

 minSize : Minimum possible object size. Objects smaller than that are ignored.

 maxSize : Maximum possible object size. Objects larger than that are ignored.

24

Exercises

A. Test the code for face detection over a single image

B. Given the face_benchmarks.rar

 parse the annotations.txt file in the following way:

i. Each line contains a path to an image and delimited by TAB the

number of faces in the respective image. Example:

1. 2002/07/19/big/img_423 1

 Open each one of the 100 .jpg’s from the two folders 2002 and 2003 and

try to apply your face detection over the image. Validate your result with

the actual result from the annotations.txt.

 Hints:

i. try to tune the parameters of detectMultiScale

ii. try to use multiple haarcascade models (.xmls) from inside haar-cascade-

files.zip over the same image.

C. Write your own code to detect faces in each frame of a live or static video

D. Implement your own face tracking algorithm in a video sequence. You need to

determine if a face detected in frame n is the same as the face detected in frame

n+1. Hint: Think of Euclidian distances between the faces from the two frames.

25

3. Detecting facial landmarks

Training specification Explanation

Organizer Valentin Fleaca

Training Topic
Understanding what facial landmarks are and how they can

be detected.

Training objectives

 Understanding what facial landmarks are and how

they can be detected. Getting familiar with SciKit API

calls

Method individual work

Target groups
 master students (Computer Science)

 software engineers

Recommended composition Individuals with basic programming knowledge

Recommended size of groups 8 to 12

Training duration 2 hours

Mode of tutoring Expert input

Mode of provision Classroom

Tools and resources to be used

(technological-support tools)
Computer room with Windows installed

Recommended preparation Getting familiar with Python and OpenCV

Modes of working in teams Collective work with distributed role

Communication and cooperation

mode
Informal communication

Necessary abilities to tackle the

tasks of open problems
Ability to listen and ask questions when something is not clear

Knowledge prerequisites Basic Python and machine learning knowledge

26

3.1 Laboratory structure

Time (minutes) Objective Performed by?

5 Presenting the objectives and

structure of this laboratory

Teacher

45 Detecting facial landmarks Teacher

50 OpenCV exercises Students

3.2 Theoretical background

What are facial landmarks?

Facial landmarks represent salient regions of the face, such as:

 Eyes

 Eyebrows

 Nose

 Mouth

 Jawline

Fig 3.2. Facial landmarks are used to label and identify key facial attributes in an image

27

Detecting facial landmarks is a subset of the shape prediction problem. Given an input

image (and normally an ROI that specifies the object of interest), a shape predictor attempts

to localize key points of interest along the shape.

In the context of facial landmarks, our goal is detect important facial structures on the

face using shape prediction methods.

Detecting facial landmarks is therefore a two step process:

 Step #1: Localize the face in the image.

 Step #2: Detect the key facial structures on the face ROI.

The facial landmark detector included in the dlib library is an implementation of the

One Millisecond Face Alignment with an Ensemble of Regression Trees paper by Kazemi

and Sullivan (2014).

This method starts by using:

 A training set of labeled facial landmarks on an image. These images are

manually labeled, specifying specific (x, y)-coordinates of regions surrounding

each facial structure.

 Priors, or more specifically, the probability on distance between pairs of input

pixels.

Given this training data, an ensemble of regression trees are trained to estimate the facial

landmark positions directly from the pixel intensities themselves (i.e., no “feature extraction”

is taking place).

The end result is a facial landmark detector that can be used to detect facial landmarks in

real-time with high quality predictions.

For more information and details on this specific technique please check the powerpoint

presentation “Understanding Kazemi’s and Sulivan’s paper.pptx”.

28

Exercises

A. Fill in the gaps for the facial landmarks predictor code:

import dlib

import cv2

import numpy as np

def drawLandmarks(image):

 #load the face detector

 face_cascade = ...

 #load the landmarks predictor

 landmarksPredictor = dlib.shape_predictor(...)

 #convert to grayscale

 gray = ...

 #detect the faces

 faces = ...

 for (x, y, w, h) in faces:

 #convert face rectangle to dlib.rectangle

 rect = dlib.rectangle(left = x, top = y, right = x +w, bottom = y + h)

 #detect the facial landmarks

 shape = landmarksPredictor(gray, rect)

 #convert result to (x,y) list of points

 shape = _shape_to_np(shape)

 #draw the face ROI

 cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 1)

 currentMark = 0

 #iterate over the facial landmarks

 for (x, y) in shape:

 cv2.putText(image, str(currentMark), (x - 10, y - 10),

 cv2.FONT_HERSHEY_SIMPLEX, 0.2, (0, 255, 0), 1)

 cv2.circle(image, (x, y), 1, (0, 0, 255), -1)

 currentMark += 1

def _shape_to_np(shape, dtype="int"):

 coords = np.zeros((68, 2), dtype=dtype)

 for i in range(0, 68):

 coords[i] = (shape.part(i).x, shape.part(i).y)

 return coords

if __name__ == '__main__':

 #read a test image

 image = ...

 #draw landmarks on image

 drawLandmarks(image)

 #display the image

 ...

 cv2.waitKey()

B. Connect the facial landmark points into regions so that it would look similar to

image 3.1.

C. Create a function that will calculate the Euclidian distance between two 2D points

given as input. Test it to find out the distance between the eyes and the mouth.

29

4. Recognizing facial emotions

Training specification Explanation

Organizer Valentin Fleaca

Training Topic Recognizing facial emotions

Training objectives
 Understanding facial emotions

 Recognize human emotions from live video sequences

Method individual work

Target groups
 master students (Computer Science)

 software engineers

Recommended composition Individuals with basic programming knowledge

Recommended size of groups 8 to 12

Training duration 2 hours

Mode of tutoring Expert input

Mode of provision Classroom

Tools and resources to be used

(technological-support tools)
Computer room with Windows installed

Recommended preparation Getting familiar with Python and OpenCV

Modes of working in teams Collective work with distributed role

Communication and cooperation

mode
Informal communication

Necessary abilities to tackle the

tasks of open problems
Ability to listen and ask questions when something is not clear

Knowledge prerequisites Basic Python and SciKit knowledge

30

4.1 Laboratory structure

Time (minutes) Objective Performed by?

5 Presenting the objectives and

structure of this laboratory

Teacher

20 Facial expressions and

emotions

Teacher

25 Learning a classifier to

recognize facial emotions

from a dataset

Teacher and students

30 Tuning the classifier

parameters to increase

accuracy

Students

20 Live face emotion recognition

system

Students

4.2 Theoretical background

What are facial emotions?

Facial expressions are the voluntary and involuntary movements occurring when

engaging one or more of the 43 facial muscles on the face. They are a rich source of nonverbal

communication and display a vast amount of information about emotion and cognition.

There are seven basic human emotions (BEs): happiness, surprise, anger, sadness, fear,

disgust, and neutral, as shown in figure 4.2.

Fig 4.2.1 Six of the seven (neutral missing) basic human emotions

31

Recognizing facial emotions

Recognizing facial emotions can be obtained by either approach:

 Conventional FER (facial emotion recognition) methods

 Deep-learning FER methods

Conventional FER methods

The shared trait of these methodologies is detecting the face area and extracting

geometric characteristics, appearance characteristics, or a hybrid of geometric and appearance

characteristics on the respective face.

In conventional FER approaches, the system is made of three main steps: (1) face and

facial component or landmark detection, (2) feature extraction and (3) expression classification.

Initial, a face picture is recognized from an input image, and facial parts (e.g. nose and eyes)

or landmarks are distinguished from the face region. Second, different features (characteristics)

are extracted from the facial parts. Third, the pre-trained FE classifiers, such as an AdaBoost

classifier, support vector machine (SVM) or random forest, give the recognition output based

on the extracted features.

Fig. 4.2.2 Steps for a conventional FER procedure

Conventional approaches require computing power and memory to be relatively lower

than deep learning approaches. Because of their low computational complexity and high degree

of accuracy, these approaches are still being studied for use in real-time embedded systems.

Deep-learning FER methods

Deep-learning based FER approaches greatly decrease the reliance on models, based on

face physics, and other pre-processing procedures by allowing “end-to-end” learning to happen

in the pipeline directly from the input images. Among the several deep-learning models

32

available, the most popular network model is the convolutionary neural network (CNN). In

CNN-based methodologies, the input image is converted to produce a feature map through a

filter collection in the convolution layers. Then each feature map is combined to fully

connected networks and the face expression is recognized as belonging to the Softmax

algorithm’s output based on a particular class.

Fig. 4.2.3 Steps for a CNN-based FER approach: (a) input images are convolved

using filters in the convolution layers. (b) Feature maps are constructed from the convolution

results and max-pooling (subsampling) layers decrease the spatial resolution of the given

feature maps. (c) CNNs apply completely associated neural network layers behind the

convolutional layers and (d) recognize a single face expression based on the Softmax output

Unlike conventional approaches, deep learning-based approaches commonly determine

features and classifiers by deep neural networks experts. Deep learning-based approaches

extract optimal features using deep convolutionary neural networks with the desired features

directly from data. However, gathering a large amount of training data for facial emotion under

the various conditions is not easy enough to learn deep neural networks. In addition, in order

to operate training and testing, deep learning-based approaches require a higher-level and

massive computing device than conventional approaches.

Classification algorithms

Most known supervised learning algorithms are:

1 Multilayer perceptron classifier (MLPC)

2 Support Vector Classifier (SVC)

3 K-Nearest Neighbors Classifier (kNN)

4 Decision Tree Classifier (DTC)

33

5 Random Forest Classifier (RFC)

6 AdaBoost Classifier (ABC)

7 Gaussian Naïve Bayes Classifier (GNBC)

8 Quadratic Discriminant Analysis (QDA)

Support Vector Machine

Support vector machines (SVMs) are a part of the supervised learning methods used for

classification, regression and outliers detections. A support vector machine constructs a hyper-

plane in a high dimensional space. Intuitively, a good separation is obtained by the hyper-plane

that has the largest distance to the nearest training data points of any class (this is called the

functional margin), since in general the larger the margin is, the lower the error of the classifier.

Fig. 4.2.4 SVM hyperplanes. The circled dots are the support vectors.

34

How can we identify the right hyper-plane?

 Identify the right hyper-plane (Scenario-1): Here, we have three hyper-planes

(A, B and C).

You need to remember a thumb rule to identify the right hyper-plane: “Select

the hyper-plane which segregates the two classes better”. In this scenario, hyper-

plane “B” has excellently performed this job.

 Identify the right hyper-plane (Scenario-2): Here, we have three hyper-planes

(A, B and C) and all are segregating the classes well.

Here, maximizing the distances between nearest data point (either class) and

hyper-plane will help us to decide the right hyper-plane. This distance is called

as Margin.

Above, you can see that the margin for hyper-plane C is high as compared to

both A and B. Hence, we name the right hyper-plane as C. Another lightning

reason for selecting the hyper-plane with higher margin is robustness. If we

35

select a hyper-plane having low margin then there is high chance of miss-

classification.

 Identify the right hyper-plane (Scenario-3)

Some of you may have selected the hyper-plane B as it has higher margin

compared to A. But, here is the catch, SVM selects the hyper-plane which

classifies the classes accurately prior to maximizing margin. Here, hyper-plane

B has a classification error and A has classified all correctly. Therefore, the right

hyper-plane is A.

 Can we classify two classes (Scenario-4)? Below, I am unable to segregate the

two classes using a straight line, as one of star lies in the territory of other(circle)

class as an outlier.

SVM has a feature to ignore outliers and find the hyper-plane that has maximum

margin. Hence, we can say, SVM is robust to outliers.

 Find the hyper-plane to segregate to classes (Scenario-5) In the scenario

below, we can’t have linear hyper-plane between the two classes, so how does

SVM classify these two classes? Till now, we have only looked at the linear

hyper-plane.

36

SVM can solve this probleme easily! It solves this problem by introducing

additional feature. Here, we will add a new feature z=x^2+y^2. Now, let’s plot

the data points on axis x and z:

In above plot, points to consider are:

o All values for z would be positive always because z is the squared sum

of both x and y

o In the original plot, red circles appear close to the origin of x and y axes,

leading to lower value of z and star relatively away from the origin result

to higher value of z.

In SVM, it is easy to have a linear hyper-plane between these two classes. But, another

burning question which arises is, should we need to add this feature manually to have a hyper-

plane. No, SVM has a technique called the kernel trick. These are functions which takes low

dimensional input space and transform it to a higher dimensional space i.e. it converts not

separable problem to separable problem, these functions are called kernels. It is mostly useful

in non-linear separation problem. Simply put, it does some extremely complex data

transformations, then find out the process to separate the data based on the labels or outputs

you’ve defined.

When we look at the hyper-plane in original input space it looks like a circle:

37

Exercises

A. In the previous laboratory you’ve implemented a facial landmarks detector able to

detect 68 facial points of interest. Using the function from bellow, calculate 39

Euclidian distances in this exact order and return a list.

def computeDistances(landmarks):

 current_distances = []

 #left eyebrow - eye

 current_distances.append(euclidianDistance(landmarks[17], landmarks[36]))

 current_distances.append(euclidianDistance(landmarks[18], landmarks[37]))

 current_distances.append(euclidianDistance(landmarks[19], landmarks[38]))

 current_distances.append(euclidianDistance(landmarks[20], landmarks[38]))

 current_distances.append(euclidianDistance(landmarks[21], landmarks[39]))

 #left eye

 current_distances.append(euclidianDistance(landmarks[37], landmarks[41]))

 current_distances.append(euclidianDistance(landmarks[38], landmarks[40]))

 #right eye

 current_distances.append(euclidianDistance(landmarks[43], landmarks[47]))

 current_distances.append(euclidianDistance(landmarks[44], landmarks[46]))

 #right eyebrow - eye

 current_distances.append(euclidianDistance(landmarks[22], landmarks[42]))

 current_distances.append(euclidianDistance(landmarks[23], landmarks[43]))

 current_distances.append(euclidianDistance(landmarks[24], landmarks[44]))

 current_distances.append(euclidianDistance(landmarks[25], landmarks[44]))

 current_distances.append(euclidianDistance(landmarks[26], landmarks[45]))

 #left eyebrow - right eyebrow

 current_distances.append(euclidianDistance(landmarks[21], landmarks[22]))

 #eyebrows - nose

 current_distances.append(euclidianDistance(landmarks[21], landmarks[27]))

 current_distances.append(euclidianDistance(landmarks[22], landmarks[27]))

 #nose

 current_distances.append(euclidianDistance(landmarks[27], landmarks[28]))

 current_distances.append(euclidianDistance(landmarks[28], landmarks[29]))

 current_distances.append(euclidianDistance(landmarks[29], landmarks[30]))

 #nose - nosestrings

 current_distances.append(euclidianDistance(landmarks[30], landmarks[31]))

 current_distances.append(euclidianDistance(landmarks[30], landmarks[32]))

 current_distances.append(euclidianDistance(landmarks[30], landmarks[33]))

 current_distances.append(euclidianDistance(landmarks[30], landmarks[34]))

 current_distances.append(euclidianDistance(landmarks[30], landmarks[35]))

 #mouth

 current_distances.append(euclidianDistance(landmarks[49], landmarks[59]))

 current_distances.append(euclidianDistance(landmarks[50], landmarks[58]))

 current_distances.append(euclidianDistance(landmarks[51], landmarks[57]))

 current_distances.append(euclidianDistance(landmarks[52], landmarks[56]))

 current_distances.append(euclidianDistance(landmarks[53], landmarks[55]))

 current_distances.append(euclidianDistance(landmarks[61], landmarks[67]))

 current_distances.append(euclidianDistance(landmarks[62], landmarks[66]))

 current_distances.append(euclidianDistance(landmarks[63], landmarks[65]))

 current_distances.append(euclidianDistance(landmarks[60], landmarks[64]))

 #mouth - nosestrings

 current_distances.append(euclidianDistance(landmarks[31], landmarks[49]))

 current_distances.append(euclidianDistance(landmarks[32], landmarks[50]))

 current_distances.append(euclidianDistance(landmarks[33], landmarks[51]))

 current_distances.append(euclidianDistance(landmarks[34], landmarks[52]))

 current_distances.append(euclidianDistance(landmarks[35], landmarks[53]))

 return current_distances

38

This function does a feature selection over the 68 points. The input parameter

“landmarks” is a list of 2D points [(x1,y1), (x2,y2)….,(x68,y68)]. Addapt your

“drawLandmarks” code from previous laboratory so that it will return this list.

The function calculates the following distances marked with green:

B. Fill in the gaps for a live emotion detector

import numpy as np

import dlib

import cv2

import math

import pickle

def getLandmarks(originalImage, faceImage, faceRect, landmarksPredictor):

 x, y, w, h = faceRect

 # convert face rectangle to dlib.rectangle

 rect = dlib.rectangle(left=x, top=y, right=x + w, bottom=y + h)

 # detect the facial landmarks

 shape = landmarksPredictor(faceImage, rect)

 # convert result to (x,y) list of points

 shape = _shape_to_np(shape)

 currentMark = 0

 # iterate over the facial landmarks

 for (x, y) in shape:

 cv2.putText(originalImage, str(currentMark), (x - 10, y - 10),

 cv2.FONT_HERSHEY_SIMPLEX, 0.2, (0, 255, 0), 1)

 cv2.circle(originalImage, (x, y), 1, (0, 0, 255), -1)

 currentMark += 1

 return shape

39

def runLive():

 #load the face detector

 face_cascade =...

 #load the landmarks predictor

 landmarksPredictor = ...

 #load the trained classifier for face emotion

 clasifier = pickle.load(open("classifierModel.cache", 'rb'))

 cap = cv2.VideoCapture(0)

 while(True):

 # Capture frame-by-frame

 ret, frame = cap.read()

 # convert to grayscale

 gray = ...

 # detect the faces

 faces = ...

 for (x, y, w, h) in faces:

 # draw the face ROI

 cv2.rectangle(...)

 #select only the face from the whole image

 faceImage = gray[x:x+w, y:y+h]

 #get the landmarks

 landmarks = getLandmarks(frame, faceImage, (x, y, w, h), landmarksPredictor)

 #compute the distances

 distances = computeDistances(landmarks)

 #predict the emotion

 predictedEmotion = clasifier.predict(np.array(distances).reshape(1, -1))

 cv2.putText(frame, str(predictedEmotion), (int(x) - 10, int(y) - 10),

 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)

 # Display the resulting frame

 cv2.imshow('frame',frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 # When everything done, release the capture

 cap.release()

 cv2.destroyAllWindows()

if __name__ == '__main__':

 runLive();

	ULBS_01 - Workplace safety – Employees emotion recognition
	Laborator_IoT_Fleaca_Valentin

