### Computer Vision for Manufacturing Industry Application

#### Case study: textile industry

**Remus Brad** 



#### Welcome



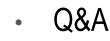
DIGIFALDESION SKILLS FOR FACTORIES OF THE FUTURE



Remus BRAD Lucian Blaga University of Sibiu

remus.brad@ulbsbiu.ro http://rbrad.ulbsibiu.ro

#### **Research interests**




- Remus Brad received an Engineer Diploma degree in Computer Science from the "Lucian Blaga" University of Sibiu (ULBS), Romania in 1993, a M.S. degree from Université "Pierre et Marie Curie" Paris, France in Artificial Intelligence in 1995 and a PhD. from Technical University of Cluj-Napoca Romania in 2003
- Since 1994 he has joined the Department of Computer Science and Automation at the "Lucian Blaga" University of Sibiu, Romania, where he is actually a Professor
- He is a Senior Member of the IEEE
- His current research interests include Image Processing, Motion Estimation and Medical Imaging

### Agenda



- Motivation
- Image processing for textile defect detection
  - Texture
  - Gabor filters
  - Texture analysis techniques for fabric defect detection
- Implementing a defect detection system in airbags manufacturing
- Image processing for sewing defect detection
- Computer Vision for Manufacturing Industry Application
  - Conclusions



### **Motivation**



- High productivity and quality by intensive inspection
- High production speed and large flexibility urge to automated defect detection
- In weaving sector, inspection is performed at the end of the manufacturing stage
- In the clothing industry, defect detection is performed between manufacturing stages
- In both cases, carried-out by manual measurements and visual examination of markers and texture

### **Motivation**



- Computer vision systems can offer:
  - robust detection
  - large flexibility
  - does not suffer of human limitations
  - could entirely replace traditional methods

 Automated visual inspection relies on material properties as texture or other features



#### Image Processing for Textile Defect Detection

# Image Processing for Textile Defect Detection



- Quality assurance systems have been developed in the aim of providing the client with a high level of trust in the producer's capacity
- Automatic production control is an important phase of quality assurance
- Texture analysis techniques for fabric defect detection
- Image processing for sewing defect detection

#### Texture

What is texture?

- "Texton" the texture unit
- Replication of the texton in two directions -> frequencies
- Detect frequencies -> detect the texton





#### Texture



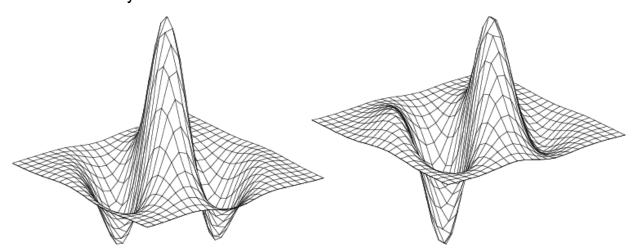
Texture analysis techniques for fabric defect detection are based on:

- gray-levels texture properties
- texture statistics
- characterization of fabric texture using a Markov random field model
- detection by model-based clustering
- Fourier transforms and Fourier-domain analysis for discriminating texture variations
- multi-resolution approaches by decomposing fabric images in several scales using a bank of Gabor filters

#### **Gabor filters**



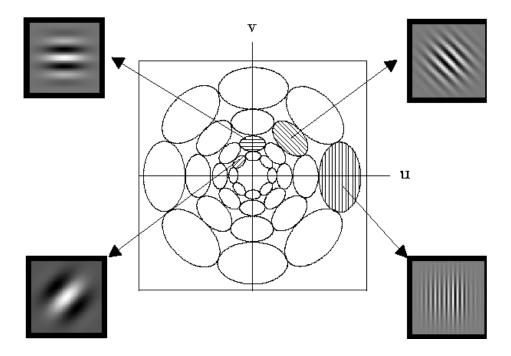
- Defined as mathematical representation of the receptive cells of the visual cortex
- Applications starting from edge detection, ending by texture classification and image compression
- Feature detection characteristic of the Gabor filters relies on the possibility of tuning the orientation and his frequency selectivity
- A bank of Gabor filters processes the input image
- Choosing the appropriate filter represents the key to correct results


### **Gabor filters**



- Gabor function resulted from a modulation product of a gaussian and sinusoidal signals
- The Gabor function has the following general form:

$$f(x, y) = \frac{1}{2\pi\sigma_x \sigma_y} \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)\right] \exp(2\pi j u_0 x)$$


where  $u_0$  - radial frequency of the filter  $\sigma_x$ ,  $\sigma_y$  - constants defining the gaussian envelope



### **Gabor filters**



- Feature detection characteristic of the Gabor filters relies on the possibility of tuning the orientation of his frequency selectivity
- Create a filter bank (variations in orientation and frequency)



| 0    | Ŵ          |       |   | = |     |   | ų.   |
|------|------------|-------|---|---|-----|---|------|
| 910  | <i>111</i> | - 111 |   |   | #   |   | - #1 |
| 1000 | 111        | 11    | - | - | 111 |   |      |
|      | ////       | ///   | - |   | 111 | # | (11) |
|      | 111        | ///   | 1 | - | -   | # |      |



Algorithm

- Choosing the appropriate filter from the bank
- Using an unsupervised algorithm for filter selection
  - The filter with large output for defect texture and small output for defect-free
- A cost function for the discrimination of the filters bank results



Steps:

- Computing S x L filters in a M x M matrix form
- Dividing the original image I(x,y) in N regions of k x k pixels
- Applying each filter in the bank to the each of the N regions
- Computing the average result for every i<sup>th</sup> filter for region n in N

$$A_n^i = \frac{1}{kxk} \sum_{(x,y)\in n} I_{pq}(x,y)$$

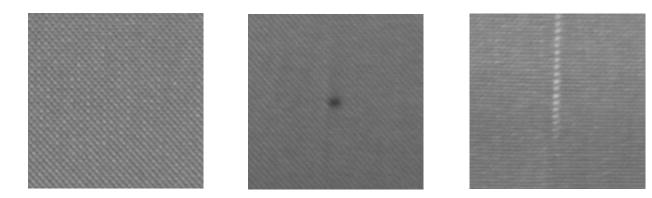


Steps:

- Retaining maximum and minimum average value for every i<sup>th</sup> filter among the N regions
- Computing the cost function as the normalized difference between the two values

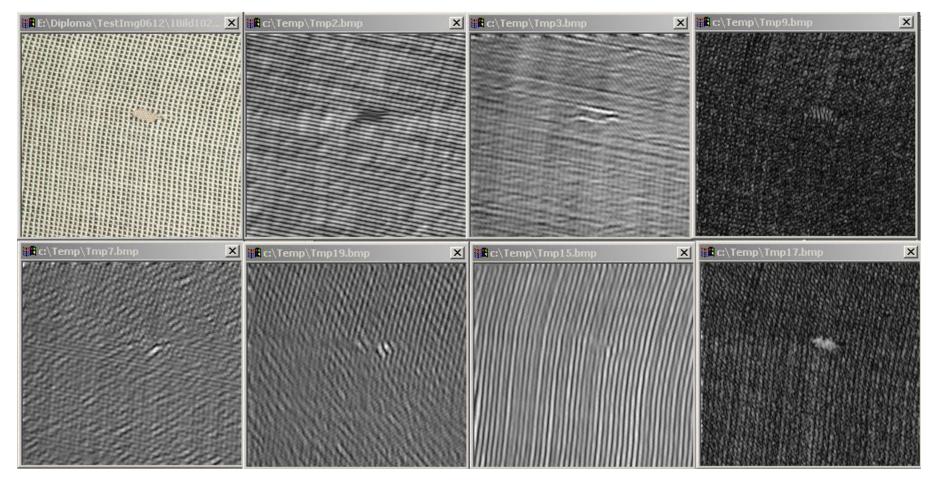
$$C(i) = \frac{A_{\max}^{i} - A_{\min}^{i}}{A_{\min}^{i}}$$

- Selecting the filter having the highest cost function
- Re-filtering the original image with the selected filter
- Thresholding operation for the final segmentation of texture defects



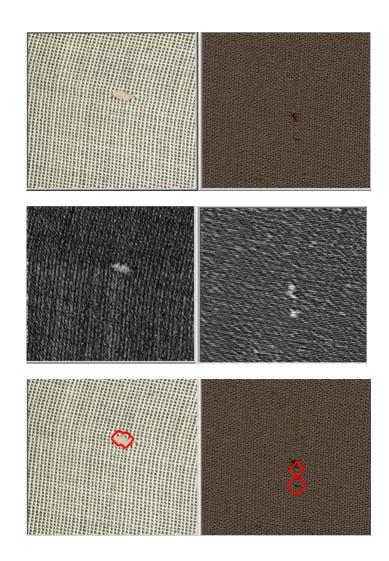

Test images:

- Images from the Brodatz set and acquired in ULBS Vision LAB
- Airbag fabric images from the TAKATA-Petri production site
- Bank of 24 Gabor filters (4 scales and 6 orientations)
- Filter size of 9 x 9 and images partitioned in 32 x 32 regions


Defects considered:

- break-out
- thick-yarn
- mispick
- dirty-yarn
- stains






#### Results:





Results:







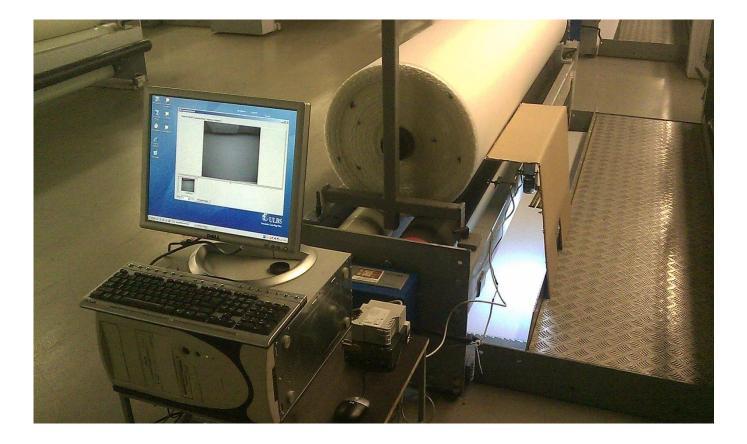
Research Grant from Takata Petri Sibiu

- Improvement of quality assurance techniques
- Weaving is one of the most important stages in airbags manufacturing process
- Quality of fabrics must be higher and provide a low air permeability in order to prevent structure tear or hot gas leak in the inflation process





ΔΚΔΤΔ


- Started with one camera on Toyota water jet loom
- 5MP Gibabit PoE Industrial camera





ΔΚΔΤΔ

Adding local illumination and lighting immunity





ΔΚΔΤΔ

- One more step ahead
- 6 GigE cameras and double LED illumination





- Improved application for defect detection and touch screen operation
- Dedicated server for data analytics







ΔΚΔΤΔ

Final implementation





ΔΚΔΤΔ

• Final implementation



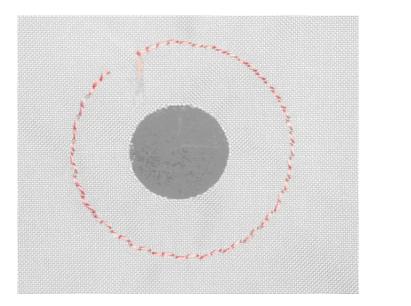


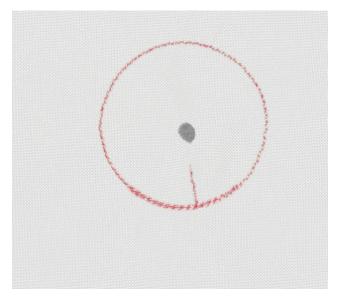


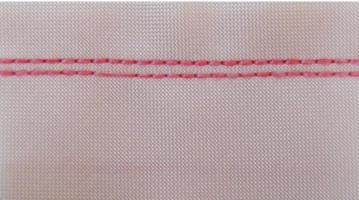
- The system was not implemented on all 60 looms for on-line defect detection (!)
- It was used for an analytical study on the defect causes -> loom maintenance
- A reduction of less than 0.5% defects by applying customized and scheduled loom maintenance
- Better results and less costs!!!






ΔΚΔΤΔ


- Airbags are subject to strict quality control in order to ensure passengers safety
- The quality of sewing influence the final product
- Sewing defects must be early and accurately detected
- Airbag seams assembly can take various forms, linear and circle primitives, with threads of different colors and length densities, creating lockstitch or double threads chainstitch
- A framework for the automatic detection of defects occurring during the airbag sewing stage
- Types of defects as skipped stitch, missed stitch or superimposed seam for lockstitch and two threads chainstitch



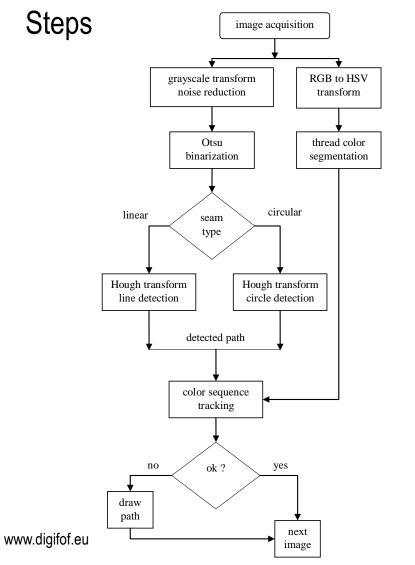

ΆΚΑΤΑ

Examples





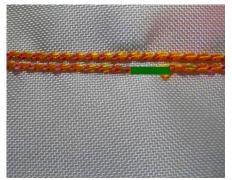





Steps

- ТАКАТА
- In view of linear or circular path recognition, the image is converted from color to a grayscale format and smoothed for noise attenuation
- The image binarization was performed using an unsupervised adaptive Otsu algorithm
- The detection of linear seams is made using the Hough transform by assessing the pixels position and their co-linearity
- The detection of circular contour seams was made using the Hough transform for circles, employing an accumulator structure to retain information regarding the detected circle center
- Using morphological information, the algorithm for linear or circular seams control is analyzing the colors being present in the acquired image along with the recognized lines or arcs

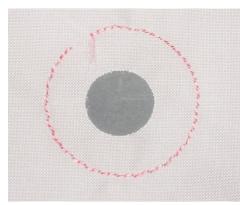




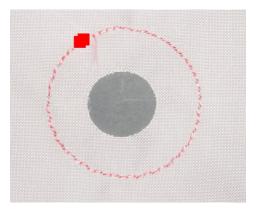


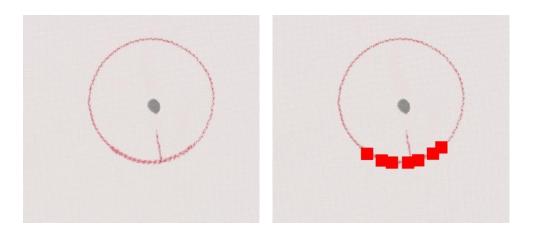


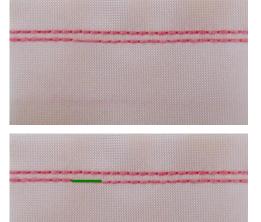






ТАКАТА


#### Results















- Besides the properties of fabric, the assembly seams play an important role in airbag functionality
- Due to the fact that the seams cannot be repaired during the production process, any stitching defect will cause a nonconforming product. Intermediate inspection of stitches before the final closure of the airbag is an important stage, since it prevents non-compliant subassembly to pass on the next production step
- Automatic defects detection of seams keeps the sewing process in control and makes the final product comply with the client requirements



### Computer Vision for Manufacturing Industry Application

Other developed systems for textile manufacturing quality control

• Seam puckering evaluation for sewing process



• The assessment of knitted fabric pilling



- The textile industry is one of the traditional and dynamic sectors
- The customer quality requirements are constantly changing as a result of trends in fashion and the development of production tools
- In order to satisfy clients' demands, the variables that affect product quality must be kept under control during the production cycle: design, manufacturing, delivery and maintenance

- The evaluation process of a product relating to appearance and performance have to rely on a holistic perspective
- Both fabrics and sewing threads assessment, but also consider their interactions during sewing, wearing and maintenance of the product
- Due to long reaction time and fatigue of the human operator, an automatic inspection would be able to verify and classify with a much higher speed and would eliminate the subjective factor

- Computer vision systems can be used both in the pre-production stage, for machines adjustment, and also in product inspection
- The ability to recognize flaws and stop production immediately after the occurrence of the defect is important for clothing manufacturers
- The automatic control system may use different technologies for image acquisition, containing mechanical components, computer software, video cameras, lighting and video equipment

#### **Questions?**







### Join DigiFoF network!

http://www.digifof.eu/