
Module
specificati

on
Explanation

Teacher
Name
Training
Topic Robotics application in Virtual Laboratory

Training
Code UNIOULU_03 Kinematics

Module
Name Kinematics

Module
duration 100 minutes

Module
objective

•Setup
•Controlling robot via ROS
•Kinematics
•Sensor interaction

Mode of
provision Classroom

Laboratory
structure

Time (min) Objective Performed by?
5 Indrotuction Teacher

35 Kinematics and sensor
interaction Teacher

60 Exercise with froward
kinematics Students

Introduction
Kinematics is a wide and deep topic whose surface can only be barely scratched
by one tutorial. The purpose of this tutorial is to teach one modern way of doing
forward position kinematics with serial manipulators with enough mathematical
background to keep the tutorial as self-contained and readable as possible. The
mathematical descriptions are quite loose, with a main purpose of giving some
intuition about their “physical” meaning. This tutorial will not use the common
Denavit-Hartenberg parameters to describe the manipulator, or Euler angles to
describe orientations, but instead focuses on exponential coordinates, screws,
and matrix representations. After the tutorial you should understand how to
construct the following equation and how to use it to switch between sensor and
global perspectives;

T (θ) = e[S1]θ1e[S2]θ2 ...e[Sn]θnM

Object vs. Representation

We often write points in 2D space as p = (x, y). Instead of thinking (x,y) as
the point itself, we can think of it as shorthand for p = xi + yj, i.e. combine
x-units of vector i and y-units of vector j, stick the root of this composed arrow
to a fixed starting location and the point will lie at the point p. The numbers
x and y therefore are the representation, or coordinates, of the point p in the
coordinate system that is determined by the origin and basis vectors i and j.
Usually we choose basis vectors that are unit length, orthogonal to each other
(in this context meaning they have a 90 degree angles to each other), and fol-
low the right hand rule for cross-products. Such orthonormal basis is indeed
very convenient in many cases, but nothing prevents us from using a different
coordinate system (different starting location, different basis vectors), in which
the coordinates of p (numbers x and y) would be different, but equally correct.
Above picture is an example of this and point p can be reached equally by the
two coordinate systems. The example should clarify the difference between a
point, and the numbers we use to represent it.

2

Just like positions on 2D planes, locations on the surfaces of spheres (such as ide-
alized planet earth), can be represented in different ways. Even though spheres
are 3D objects embedded in 3D space, their surfaces are 2D objects embedded in
3D space, so just like positions in a 2D plane can be represented by a minimum
of two numbers, the location on the surface of a sphere can also be represented
by just two numbers, such as the latitude and longitude angles commonly used
in navigation. However, the 2D surface of a sphere is topologically different to a
2D plane as a plane continues to infinity (you can walk forever in any direction),
and the surface of a sphere wraps unto itself (you can only walk limited distance
on a given direction before returning where you started). This causes some un-
fortunate issues when we try to represent each point on the surface of a sphere
with just two numbers. For example, walking some time along the equator of
Earth would change our longitude much less than walking the same time around
a nearby geographical North Pole (NP), i.e. the rate how fast the two-parameter
representation of our position changes is dependent on not only our actual walk-
ing speed, but also our location. For example, just by looking at the rate of
change of longitude we couldn’t tell if we were actually walking very fast or just
near the NP. The longitude changes faster and faster the closer we circle NP,
and at the exact position of NP this latitude-longitude representation “breaks
down” as any value of longitude is equally valid there. These breakdowns are
more formally called representation singularities and they are troublesome for
computer applications because additional code is needed to handle them (anal-
ogous how we want to avoid divisions by zero) as even a “proximity” to them
causes issues with numerical accuracy. Furthermore, this two-parameter repre-
sentation clearly does not match our intuition as our walking speed does not in
reality dramatically increase the closer we are to the NP, and the world does
not break if we reach it.

The examples above are explicit parameterizations’ that use as few numbers as
possible. An alternative is to use implicit parameterizations’ which use more
numbers than strictly necessary, but also give constraints to them. For example
we could use three numbers instead of two to represent a point a spheres surface,
but also give them the following constraint with fixed radius r; x2+y2+z2 = r2.
We still only have 2 Degrees of Freedom (DOF), because even though we now
have three numbers instead of two, we can choose only two of them “freely”.
In general DOF = #numbers−#constraints. In some cases this not true, but
those cases are not discussed in this tutorial. Implicit parameterizations need
more memory than explicit parameterizations, and are sometimes arguably less
intuitive, but they generally behave “nicely” everywhere. For example, the
above implicit parametrization does not have any representation singularities
and the overall rate that the number triplet (x, y, z) changes is only dependent on
your actual physical velocity, and not on location as was the case with latitude-
longitude parameterization. This tutorial uses implicit parameterizations.

3

The key points are:
- We can represent things in multiple ways.
- A number is just a number and needs extra rules to give it a meaning.
- We choose those rules.
- Some rules are more convenient than others (e.g. they match our intuition or
have other nice properties).

3D orientation

As with all things, the orientation of a frame floating in a 3D space can repre-
sented in many ways, the most popular being Euler Angles, Rotation matrices,
and quaternions. Euler angles are a form of explicit parameterization and thus
use a minimal amount of three numbers (usually roll, pitch, yaw). Euler angles
suffer from similar issues as latitude-longitude of the previous example, with
“gimbal lock” being the most famous problem. As this tutorial uses implicit
parameterizations, Euler angles are not discussed further. Quaternions are 4
number implicit parameterizations with nice mathematical properties, but are
also not discussed in this tutorial.

3x3 rotation matrices R are implicit representations of 3D orientation. Even as
R has nine elements, it only has three degrees of freedom as the elements are
subjected to six constraints. Each column must be unit length (3 constraints),
and orthogonal to each other (another 3 constraints). These constraints are
succinctly expressed as the property R−1 = RT . This is a significant property
as matrix inversions are usually costly operations, and transposing a matrix is
cheap. Rotation matrices have no representation singularities and their columns
have clear geometric meanings. Each column of R describes where the tips basis
vector would end up after the rotation that R represents. The first column

tells where the tip of
[
1 0 0

]T
gets rotated to, the second column where[

0 1 0
]T

and the third column where
[
0 0 1

]T
.

4

R can be viewed as a representation of a linear transformation that some-
how rotates everything in space around some unchanging frame of reference.
As previously discussed, the coordinates x, y, z, of point p just tell how many
units of basis vectors are needed to reach the specific location in space. For
example if the space, and thus also the basis vectors of some frame of refer-
ence initially co-incident with the unchanging frame, has been modified by a

linear transformation represented as R =

0.77 −0.18 −0.61
−0.1 0.91 −0.4
0.63 0.37 0.69

 , the new lo-

cation of p = (1, 0.45, 1), as viewed in the unchanged reference frame, is then

p′ = 1

0.77
−0.1
0.63

+ 0.45

−0.18
−0.91
0.37

+ 1

0.77
−0.1
0.63

 =

 0.08
−0.09
1.48

3D rotational velocity

Any orientation can be achieved by picking a rotation axis and turning around
it for a specific amount. As the orientations of physical objects can smoothly
change, so should the values of our representation R change smoothly. As
rotating an object around a fixed axis way long enough returns it to its original
orientation, so should the values of our representations “wrap around”.
Given these two conditions it would initially make sense to imagine all possi-
ble orientations as somehow “living” on a surface of a sphere (imagine dotting
the whole surface of a ball with a pen end then giving each dot writing an
unique numerical description R). Each point on the sphere would be a specific
orientation that can be uniquely represented with R. Moving from a starting
orientation to a final location would be like drawing a path with a finger so that
the orientation, and its representation R smoothly changing without any gaps
(if we had dotted the ball with infinitely small intervals). Picking a specific
direction and sticking to it would eventually cause the finger to travel around
the ball and return to the starting location.

The above analogy works well enough, but it has a major flaw. The problem is
that as the surface of a 3D sphere we can touch is actually 2D, and thus each
point would give two independent values, no three as required. The solution is
therefore to consider the orientations as “living” on a 3D surface of a 4D sphere.
We can’t imagine a 4D sphere visually, but nevertheless the mathematics work.

5

Just like any orientation can be achieved by picking a rotation axis and turning
around it for a specific amount, so can any instantaneous rotational velocity be
achieved by picking a rotation axis and rotating around it with specific velocity.
The instantaneous velocity of a point constrained to a ring (a 1D sphere) is
constrained to the tangential vector, and the instantaneous velocity of a point
constrained to a 2D sphere is constrained to a tangential 2D plane. Similarly
the velocity on the surface of a 3D sphere (which we can’t imagine) is con-
strained to a 3D (hyper)plane. The 3D hyperplane is just the Euclidean space
we live in, so we can visualize it. Each point in this 3D space, that is somehow
tangential to a 4D object and has a origin at the contact point, represents a
specific unique rotational velocity. Let’s call the coordinate a specific point as

ω =
[
ω1 ω2 ω3

]T
. Note that even though orientations have a limited range

of values (because they “live” on the surface of a 4D sphere), ω has no such
restriction (as the point it represents lives in 3D space that does not wrap back
to itself). You can imagine the rotational velocity represented by ω as a com-
bination of static axis of rotation and some angular velocity around it, i.e a
specific rotational velocity is ω = θ̇ω̂ where θ̇ is the rotational velocity and ω̂ is
a unit length axis of rotation.

6

Frames are composed of three orthonormal vectors. The rate of change of one
vector tip p is given by the cross product between the rotation axis and vector
pointing to p that is scaled by the rotational velocity

ṗ = θ̇(ω̂ × p)

We can express the cross product operation as a matrix multiplication ω̂ × p =
[ω̂]p where

[ω̂] =

 0 −ω̂3 ω̂2

ω̂3 0 −ω̂1

−ω̂2 ω̂1 0

If we now collect all three vectors to a single matrix R we have the following
equation for the rate of change of in the elements of R

Ṙ = θ̇[ω̂]R

Note Ṙ is now dependent also on the current value of R, but unlike the latitude-
longitude case, is not scaled by it. Also note that on the right side of the equation

7

all the values have clear physical meaning of angluar velocity, rotation axis and
a combination of current locations of frame tips.

Exponential coordinates for rotations

Functions can be written as an infinite sum of its derivatives evaluated at some
fixed point b. This infinite sum is known as Taylor Series of the function.

f(x) = f(b) +
f ′(b)

1!
(x− b) +

f ′′(b)

2!
(x− b)2 + +

f ′′′(b)

3!
(x− b)3 + ...

A classic example of Taylor series is sinθ evaluated at zero.It is

sin θ = θ − θ3

3!
+
θ5

5!
− ...

Above and left is a picture of the first 7 elements of the sum, on the right are the
sum of 1,2,3,5,6, and 7 first elements and actual sine wave. Note that as the new
elements are added the closer the sum is to the sine wave locally. Infinite sums
do not sound very practical, but in many useful cases these seemingly infinite
sums can be condensed to short closed form solutions by noticing some well
known repeating pattern, such as the sine Taylor series are the cosine Taylor
series

cos θ = 1− θ2

2!
− θ4

4!
+
θ6

6!
− ...

The solution to first order differential equation x ∈ R : ẋ = ax(t) ⇒ x(t) =
eatx(0) is in expressed in Taylor series as

f(t) = eat, f ′(t) = aeat, f ′′(t) = a2eat, f ′′′(t) = a3eat, ...

eat = ea0 +
aea0

1!
(t− 0) +

a2ea0

2!
(t− 0)2 +

a3ea0

3!
(t− 0)3 + ...

eat = 1 + at+
(at)2

2!
+

(at)3

3!
+ ...

8

The above is valid even when the constant is a matrix instead of a scalar.

x ∈ Rn : ẋ = Ax(t)⇒ x(t) = eAtx(0)

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ ...

We can therefore find solution for

x ∈ Rn : Ṙ = θ̇[ω̂]R(t)⇒ R(t) = eθ̇[ω̂]tR(0)

where R(0) is the initial orientation and R(t) the orientation after rotating with
ω̂ angular velocity around unit axis of direction ω̂ for t seconds. By setting
θ̇ = 1 we can write R(θ) = e[ω̂]θR(0) which we can view as a function for final
orientation after rotating around ω̂ for θ radians. e[ω̂]θ is therefore a rotation
matrix R which rotates the initial configuration R(0) to final configuration R(θ).
Solving e[ω̂]θ via Taylor series gives

e[ω̂]θ = I + [ω̂]θ +
([ω̂]θ)2

2!
+

([ω̂]θ)3

3!
+ ...

= I + [ω̂]θ + [ω̂]2
θ2

2!
+ [ω̂]3

θ3

3!
+ ...

= I + (θ − θ3

3!
+
θ5

5!
− ...)[ω̂] + (

θ2

2!
− θ4

4!
+
θ6

6!
− ...)[ω̂]2

= I + sin θ[ω̂] + (1− cos θ)[ω̂]2

= R

The key to expressing an infinite series a short closes form solution by first
noticing that there are actually only four different matrices that get repeated,
namely −[ω̂], [ω̂],−[ω̂]2, and [ω̂]2:

ω̂ = [ω̂1, ω̂2, ω̂3]T ∈ R3, ||ω̂|| = 1, [ω̂] =

 0 −ω̂3 ω̂2

ω̂3 0 −ω̂1

−ω̂2 ω̂1 0

[ω̂]2 =

−ω̂2
2 − ω̂2

3 ω̂1ω̂2 ω̂1ω̂3

ω̂1ω̂2 −ω̂2
1 − ω̂2

3 ω̂2ω̂3

ω̂1ω̂3 ω̂2ω̂3 −ω̂2
1 − ω̂2

2

[ω̂]3 =

 0 ω̂3(ω̂2
1 + ω̂2

2 + ω̂2
3) −ω̂2(ω̂2

1 + ω̂2
2 + ω̂2

3)
−ω̂3(ω̂2

1 + ω̂2
2 + ω̂2

3) 0 ω̂1(ω̂2
1 + ω̂2

2 + ω̂2
3)

ω̂2(ω̂2
1 + ω̂2

2 + ω̂2
3) −ω̂1(ω̂2

1 + ω̂2
2 + ω̂2

3) 0

9

=

 0 ω̂3 −ω̂2

−ω̂3 0 ω̂1

ω̂2 −ω̂1 0

 = −[ω̂]

[ω̂]4 = [ω̂]3[ω̂] = −[ω̂]2

[ω̂]5 = [ω̂]3[ω̂]2 = −[ω̂][ω̂]2 = −[ω̂]3 = [ω̂]

[ω̂]6 = [ω̂]3[ω̂]3 = −[ω̂](−[ω̂]) = [ω̂]2

...

So the key discovery is that

[ω̂]3 = −[ω̂].

Then, after re-arrigning the the sum as

I + (θ − θ3

3!
+
θ5

5!
− ...)[ω̂] + (

θ2

2!
− θ4

4!
+
θ6

6!
− ...)[ω̂]2

we notice that (θ− θ3

3! + θ5

5! − ...) is simply sinθ and (θ
2

2! −
θ4

4! + θ6

6! − ...) is simply
(1 − cosθ). We now have a simple solution for calculating rotation matrix R
from the given product unit length rotation axis and rotation angle θω̂ :

R = I + sin θ[ω̂] + (1− cos θ)[ω̂]2

This a is called the Rodrigues’ formula. We can view ω̂ either as a static rotation
axis around which we rotate θ degrees, or view ω̂ is an active motor that rotates
things around at a rotational velocity 1 rads for θ seconds. Both views are equally
valid and the viewpoint can be chosen based on the problem at hand. We can
construct R by exponentiating the product θω̂ (the representation of angular
velocity) and thus call θω̂ the exponential coordinates for rotation. Note that
the product θω̂ can be viewed as being constructed from four numbers and one
constraint ||ω̂|| = 1. Writing θ and ω̂ separately would be the axis-angle repre-
sentation. There is also an algorithm for finding θω̂ for given R (the “matrix
logarithm” of the rotation R) but it will not be discussed in this tutorial.

3D pose representation

For general 6D description of an object’s pose (3 paramaters for location, 3 for
orientation), a 4x4 homogeneous transformation matrix T is often used:

T =

[
R p
0 1

]

10

where R is the 3x3 rotation matrix and p the 3x1 location vector. When T is
viewed as linear transformation the, it first rotates the space with R and then
translates everything according to p.

T = Trans(p)Rot([ω̂], θ)

The inverse of T is,

T−1 =

[
RT −RT p
0 1

]
If a space is first transformed by T , then transforming with T−1 would return
the space back to its original state, and thus returning all points and frames to
their original positions and orientations, i.e

T−1T = I

Twist, general motion in 3D

Any general instantaneous velocity can be viewed as rotation about an axis with
simultaneous translation along it, i.e a screwing motion. Think of as placing
the rotation axis anywhere in space (with pure rotation the axis could go only
through the origin of the unchanging frame). The axis then rotates everything
around it while at the same time sliding along it with the ratio between rotation
and sliding given by the pitch. Previously we derived

Ṙ = θ̇[ω̂]R⇒ ṘR−1 = θ̇[ω̂] = [ω]

for orientations, with θ̇[ω̂] having very clear physical meaning of angular veloc-
ity and rotation axis. You could imagine that the right side θ̇[ω̂] is therefore
somehow the “actual” ongoing rotation, and the left side ṘR−1 is more involved
about our chosen method of representing orientation. It just happens so that
similar relationship applies also to general motion

Ṫ T−1 =

[
Ṙ ṗ
0 1

] [
RT −RT p
0 1

]
=

[
ṘRT ṗ− ṘRT p

0 0

]
=

[
[ω] v
0 0

]
= [V]

with the right side somehow being the “actual” general motion. [ω] = θ̇[ω̂] is the
familiar representation of total rotational velocity and v the velocity of body-
fixed points that go through the origin. v therefore embeds onto itself both the
translation along the axis, and the location of the axis (the farther away the

axis is, the larger v would be with given θ̇. For example, with ω =

 0
0
1

 the

value of v would change if we moved the rotation axis from a location where it
pierces the xy-plane at [5,0] to a location where the piercing happens at [0,5].

11

More formally v = ṗ−ω×p. Imagine that point p is fixed to a turntable that is
turned by the rotation axis. In the image above p was at the rotation axis and
thus ṗ was zero. We can combine all the relevant information of [V] to a single

6-element twist vector V =

[
ω
v

]
=

[
ω̂θ̇

hω̂θ̇ − ω̂θ̇ × p

]
where h is the pitch and p

some point on the rotation axis. In the 2D the example above the pitch was
zero. If it had not been non-zero then the point at the origin would have move
in a helical motion away from the plane, i.e having addtional velocity in the
z-direction. For the rest of the tutorial we assume that the pitch is always zero.
The twist V can expressed as V = θ̇S where S is the screw and it is analogous
to the unit length rotation axis ω̂. Just like the unit rotation axis has an al-

ternative from [ω̂], so does the screw with [S] =

[
[ω̂] hω̂ − ω̂ × p
0 0

]
=

[
[ω̂] v′

0 0

]
.

Exponential coordinates for poses

Just like we could use the exponential coordinates [ω̂]θ to construct rotation
matrix R, we can construct general pose matrix T from [S]θ. The basic principle
is the same and θ is still the rotation in radians. The only difference is that
with [S] the rotation axis does not need to go through the origin and that there
is the translation caused by sliding along the axis.

T = e[S]θ = I + [S]θ + [S]2
θ2

2!
+ [S]3

θ3

3!
+ ...

=

[
e[ω̂]θ G(θ)v′

0 1

]

12

where

G(θ) = Iθ + [ω̂]2
θ2

2!
+ [ω̂]3

θ3

3!
+ ...

= Iθ + (
θ2

2!
− θ4

4!
+
θ6

6!
− ...)[ω̂] + (

θ3

3!
− θ5

5!
+
θ7

7!
− ...)[ω̂]2

= Iθ + (1− cosθ)[ω̂] + (θ − sinθ)[ω̂]2

Basically, if we know how to construct [S] from a technical drawing, then the
above equation is basically everything we need to calculate the forward kine-
matics of serial manipulators.

Forward kinematics algorithm

Given the above (crude) technical drawing we can by visual inspection determine
that the tip’s home pose is

M =

0 −1 0 12
1 0 0 8
0 0 0 1
0 0 0 1

13

and the four joints are located at [0, 0, 0]T , [6, 0, 0]T , [12, 0, 0]T and [12, 4, 0]T (so
we know p for each joint), and that each joint is rotational with joint axis
ω̂ = [0, 0, 1]T . As the joints are rotational their pitch is zero. This is all
the information we need to construct the forward kinematics equation that
calculates the tip’s pose with given joint values θ1, θ2, θ3 and θ4. We combine
these four values as vector θ. We can view the effects of each manipulator as a
linear transformation Tn = e[Sn]θn

T (θ) = T1T2T3T4M

= e[S1]θ1e[S2]θ2e[S3]θ3e[S4]θ4M

At home position all angles are zero and thus

T (0) = IIIIM

= M

If only the third joint has been turned then

T (θ) = IIe[S3]θ3IM

= e[S3]θ3M

and similarly for other joints. We can imagine going through the joints from tip
to base. The joint closest to the tip changes the pose of M, then the second-to-
last joint changes this modified pose, and so on until the first joint at the base.
The geneal forward kinematics formula for n joints is

T (θ) = e[S1]θ1e[S2]θ2 ...e[Sn]θnM

The above equation, the equation for e[S]θ, and how to visually inspect a tech-

nical drawing for [S] =

[
[ω̂] hω̂ − ω̂ × p
0 0

]
=

[
[ω̂] v′

0 0

]
, is evertyhing we need

to calculate the forward kinematics of serial manipulator.

Sensor Interaction
If we set the tip frame as the frame of some sensor and measure the pose of
some object of interest in that frame, then we can calculate the pose of that
point in some other frame of reference by using the forward kinematics code

Mpose−in−base−frame = T (θ)Mpose−in−sensor−frame

Further Reading
This tutorial skipped and condensed lot of relevant material and is not math-
ematically rigorous. For those who want deeper understanding of the material

14

a good foundation of linear algebra is crucial. The book “Modern Robotics:
Mechanics, Planning, and Control” (and the associated videos) by Kevin M.
Lynch and Frank C. Park offers a good and far more extensive introduction to
exponential coordinates and screws. Even more exhaustive and mathematically
rigorous explanations for the material of this tutorial can be found in the litera-
ture of Lie Groups and Lie Algebras. Numerical optimization methods are also
important as they are often used in calculating the inverse kinematics.

Exercise

Setup
Open the simulator scene, code template, and technical drawing.

Task

First task

Students are give a technical drawing of an arm, a simulation scene where this
arm is already constructed, and a code template where the communication with
the simulator is already implemented. The students’ task is to look at the tech-
nical drawing, and write the forward kinematics code (in python) for it. In
the code template there are hints how to perform relevant mathematical oper-
ations. A random number generator that gives values to joints. The students’
implementation must take these numbers, calculate the forward kinematics, set
a frame to that pose, “release” the arm and see if the tip goes to that same pose.

Second Task

The sensor a the tip of the serial manipulator locates a point of interest in its
own frame of reference. Use the the previously developed forward kinematics
algorithm to calculate where the point is in another frame of reference.

15

16

