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1 Introduction 

The complexity of manufacturing processes is steadily increasing. This complexity makes 

it impossible for manufacturing process supervision to be mastered by classical methods. 

Computerization is thus involved in the supervision and management of all organizational 

activities of companies. Computerization involves choosing and using an available tool 

for modelling, simulation and process analysis. 

The variety of modeling processes, often, makes it necessary to implement specific 

modelling tools. The first phase of this process is the specification and implementation of 

the Modelling Method over a metamodeling platform.  

The language specific to a Modelling Method [Karagiannis2002] relies heavily on 

graphic elements. In order to represent the properties of the models in the form of 

specifications, it is important to build the most appropriate language to enable these 

specifications to be written in a very clear and simple form. 

A category [Barr2012] as well as a model is a mixture of graphical information and 

algebraic operations. Therefore, category language seems to be the most general to 

describe the models [Milner2009]. It can provide us with the features that must 

characterize both the Domain Specific Language (DSL) and the Modelling Method 

concept. 

The theory of categories works with patterns or forms in which each of these forms 

describe different aspects of the real world. Category theory offers both, a language, and 

a lot of conceptual tools to efficiently handle models. 

An important aspect of manufacturing process models is building complex functions from 

a given set of simple functions, using different operations on functions such as 

composition and repeat composition. Category theory is exactly the right algebra for such 

constructions. 

Since category theory is an abstract algebra of functions, we can consider categories that 

are purely formal and do not necessarily consist of functions in the sense of the 

mathematical definition. These are the syntactic part of the models. Programs and 

languages are formal constructions that are intended to describe or specify formal 

functions. The category theory is well adapted to deal with the relationship between 

syntax and semantics. 

Many system (process) properties can be unified and simplified through an arrow diagram 

presentation (graphs). The category theory provides the ideal framework for such 

constructions. 

What characterizes a modelling language is primarily expressivity, but the language of 

categories is one of the most expressive languages of mathematics. 

We will specify both the concept of modelling method and that of multi-level modelling 

in the language of the category. This approach provides us with information about the 

facilities that a metamodeling language must provide in order to be able to specify such 

models. 

To specify the syntax of a graphical metamodel we will use a categorical sketch, which 

in turn is represented in a graphical language. 
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2 Formalizing the concept of modelling method 

We understand a manufacturing process as a behavior model of a dynamic system at a 

certain level of abstraction.  While a sequential system performs a single step at a time 

and can therefore be characterized by a single current state, the different components of 

a concurrent system may be in different local states at a time, which together make up the 

global state of the system at a time. 

The behavior of the system is given by several processes that are executed simultaneously 

(parallel and distributed), where these processes exchange data to influence each other's 

evolution. 

A process is a sequence of steps that define behavior. There are several approaches to the 

notion of step, which leads to as many different types of behavior. 

Labeled transition systems are the most commonly used models for competing process 

semantics, and are essential for process algebras, where processes typically receive a 

semantic as labeled transition systems. 

In this sense, one step is a triplet (s1, , s2) where  is a label of an action, which is an 

element of a certain set of actions, and s1 and s2 are states from a set of states. 

Thus, a manufacturing process can be defined as a graph P, whose nodes are the states in 

which the system can be at a given moment of operation, and the arcs of the graph P have 

labels representing actions that can be executed by the simulated system. An execution 

of process P is described by a movement along the arcs of graph P from one state to the 

other. Execution starts from a distinct state called initial state. 

The theoretical mechanism most used for modeling processes is the transition system. 

Transition systems are mechanisms with a well-defined syntax and semantics, but become 

impossible to use in competing systems. For this reason, many other higher-level 

languages such as Petri Nets, Business Process Model and Notation (BPMN), Event-

driven Process Chain (EPC), Unified Modeling Language (UML), etc. are used in 

practice. These models describe the processes in terms of activities ordered through casual 

dependencies [Craciunean2018] [Craciunean2019]. A mechanism that can be the base of 

such a metamodel is the concept of modeling method. 
A modeling method however is a concept [Karagiannis&Kühn2002] [Bork2019] that 

consists of two components: (1) a modeling technique, which is divided in a modeling 

language and a modeling procedure, and (2) mechanisms & algorithms working on the 

models described by a modeling language. The modeling language contains the elements 

with which a model can be described. The modeling procedure describes the steps 

applying the modeling language to create results, i.e., models. Algorithms and 

mechanisms provide “functionality to use and evaluate” models described by a modeling 

language. Combining these functionalities enables the structural analysis, as well as 

simulation of models. 

Essentially, a modeling method relies heavily on the graphical notation. The sketch L1 

that we will define in this section is generating the basic concepts for describing the 

models and the appropriate graphical notation. The modeling procedure describes the 

steps to be followed in applying the modeling language to create results, i.e. patterns. 

Algorithms and mechanisms provide functionality for the use and evaluation of models 

described by a modeling language. This functionality is given by the processes that act 

on models to change their state. Combining these functionalities allows structural analysis 

as well as the simulation of the models. 

The essential part of a Modeling Method is the modeling language. In our approach, this 

language is a Domain-Specific Language (DSL). 
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A DSL is a programming language that offers increased facilities for application 

development in a domain [Fowler2010] [Karagiannis2016]. The point is that the concepts 

and notation of such language are as close as possible to what we have in mind when we 

are thinking about a solution in this area. A Domain-Specific Modeling Language 

(DSML) is a DSL adapted to specify models.  

In the Model Driven Engineering (MDE) conception, the development of DSMLs is an 

integral part of the software modeling process. These DSMLs are, in general, graphic 

languages adapted for specifying the models in a domain. Designing a new DSML 

involves first interpreting the nodes and edges of a graph and then imposing domain-

specific constraints and assigning suggestive visual symbols to represent the concepts 

involved in the models specific to the language in question. 
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3 Defining the Modeling Language for Manufacturing 
Processes 

 

The following sections describes the concepts and the design consideration for the 

Categorical Modeling Method proposed namely the Modeling Language for 

Manufacturing Processes (MLMP). They are a generalization of those presented in 

[Mironescu2019]. 

3.1 Static aspects   

This part describes the main language concepts. The symbols used are given in Table 1. 

The graphical representations of the language concepts are presented in Table 2. 

 

Table 1. Symbols used for the mathematical description of the modeling language 

concepts 

Symbol Meaning 

AGV autonomous guided vehicles 

AGVs vehicle-type transport equipment set 

ALG the control algorithm for which several representation options can 

be considered 

BF buffer 

BFs buffers set 

c capacity (maximal content) 

cc current content 

ct current quantity transported 

com command from the accepted set COM 

COM set of orders accepted by machines (symbols accepted on the 

information input port from the superior level) 

CBP conveyors, belts, pipes 

CBPs conveyor, belt, pipe type transport equipment set 

ec command and control element 

EC control elements set 

fin function that associates the input of each element with the 

corresponding buffer port 

fout function that associates the output port of each element with the 

corresponding buffer 

FMS flexible manufacturing system 

i information 

I set of all possible types of information 

IP information port 

idin start buffer 

idout stop buffer 

lop list of technological operations that the machine can perform 

lopt list of transport operations 

lpii list of information in-port 

lpio list of information in-port 

lpmi list of material in-port 

lpmo list of material out-port 
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m type of material  

M set of all possible types of materials 

MA machine 

MAN manipulator 

MANs manipulator type transport equipment set 

MI list of input material-quantity pairs 

MO list of output material-quantity pairs 

MP material port 

OP set of all possible technological operations 

opt transport operation 

OPT set of all possible transport operations 

p port 

pi input port from which the manipulator takes the material 

po output port where the manipulator put the material 

P set of ports 

PIN reunion of all input ports sets of all elements 

POUT reunion of all output ports sets of all elements 

PMI set of materials input ports 

PMO set of materials output ports 

PII set of information input ports 

PIO set of information output ports 

s sense 

S set of the two possible types of senses (in or out) 

t type of port 

ta action duration 

tt transport time 

T set of all possible types of ports 

TC set of material-quantity pair 

TS transport system 

WS workstation 

WSs workstation set 

X set of objects (concepts) representing the graph nodes 

XAGV set of Autonomous Guided Vehicles 

XCBP set of conveyors, belts, pipes 

XMAN set of manipulators 

XBF set of collection buffers for material components 

XIP set of information ports 

XMP set of material ports 

XTS set of transport systems for material components 

XWS set of workstations for the primary components 
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Table 2. Graphical representation of the modeling language concepts 

Graphical representation Meaning 

 

Material type port 

 

Information type port 

 

Buffer  

 

Workstation 

 

Autonomous guided vehicles 

 

Conveyors, belts, pipes 

 

Manipulator 

 

Control element 

 

i 

M

m 
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3.1.1 Ports 

Every port p has a type and a direction. There are general classes, depending on what is 

transmitted through the port. In this approach, we will use M and I as such classes. It 

would be straightforward to extend the system to other types, too (e.g. Energy). 

Within each class, labels can be declared that differentiate ports types:  

• The material and information type label: mM, iI; 

• The labels: T = M  I; 

• The directions: S = {in, out}; 

• The ports P = {(t, s)  tT, sS} , P  TxS. 

Every port has an in or out direction.   

Graphical representation of the modeling language concepts are given in Figure 1. The 

connection between the entities is represented as in Figure 2 and has the port type and the 

sense on it.    

 

  

a b 

Figure 1. Material type port (a) and information type port (b). The triangle shows the 

direction – the edge is pointed to the exterior (out port) or interior (in port) of the 

entity that contains it. The label is written inside. 

 

   a 

 

b 

 

Figure 2. Connection representation. a) disconnected; b) connected. 

        

Important sets:  

• PMI is a set of materials input ports: 

PMI={(m,”in”) | mM}  PMI  M x {„in”}   

• PMO is a set of materials output ports: 

PMO={(m,”out”) | mM}  PMO  M x {„out”}   

• PII is a set of information input ports: 

PII={(i,”in”) | iI}  PII  I x {„in”} 

i 

M
m 
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• PIO is a set of information output ports: 

PIO={(i,”out”) | iI}  PIO  I x {„out”} 

3.1.2 Buffers 

The buffers have: a type; a current content, cc = number of units (variable attribute); a 

capacity, c (constant attribute, representing the maximal content). 

The buffers have an input port and an output port for each material. 

The mathematical description of a buffer is: 

B = {(m, cc, c, (m, ”in”) ,(m,”out”), (i, ”in”) ,(i, ”out”))| tT, ccℕ , cℕ} 

A buffer is an element of the Cartesian product:  

B  T x ℕ x ℕ x PMI x PMO xPII x PIO 

Figure 3 presents a buffer as circle with input and output ports for material and 

information. In the center the type, current quantity and maximum quantity of material 

contained are displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Buffer representation. In this particular case, the type is m, current content is 

20 and capacity is 30. 

3.1.3 Machines  

Every machine has associated: 

▪ at least one in-port for information on which commands or signals are transferred; 

▪ at least one out-port for information on which the machine sends responses or 

commands; 

▪ at least one in-port for materials; 

▪ at least one out-port for materials. 

Therefore, a definition of the abstract type from which all machines are derived, is: 

MA = (lpii, lpio, lpmi, lpmo) 

where: 

- lpii is the list of information in-port: lpii   P(PII)∖; 

- lpio is the list of information in-port: lpio  P(PIO)∖; 

- lpmi is the list of material in-port: lpmi  P(PMI)∖; 

- lpmo is the list of material out-port: lpmo  P(PMO)∖; 

In these expressions, P(A) is the set of sub-sets of set A (where A is one of the 

port sets: PII, PIO, PMI, PMO). P(A)∖ expresses the condition that the lists 

should have at least one element. 

m 
20:30 
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3.1.3.1 Workstations 

Every workstation (WS) has a list of technological operations (product capabilities). 

Every technological operation contains: the type and the number of materials taken from 

the feed buffers (MI); the number and type of materials that will be deposit in the output 

buffers (MO); the duration of the operation (ta). This can be expressed mathematically as 

following: 

▪ The tuple (com, MI, MO, ta) is an tehnological operation, where:   

- com is a command from the accepted set COM: comCOM ;  

- COM is the set of orders accepted by machines (symbols accepted on the 

information input port from the superior level); 

- MI is  a list of input material-quantity pairs: MI  P(TC); 

- MO is  a list of output material-quantity pairs: MO  P(TC);  

- TC is the set of material-quantity pair: 

TC= MN 

where N is the natural number set; 

- ta is the action duration: taN. 

OP is the set of all possible technological operations. 

lop is a list of technological operations that the machine can perform: lop P(OP).  

The workstation WS = (lpii, lpio, lpmi, lpmo, lop) 

The types of materials defined in each operation, in MI and MO must correspond to the 

types of ports in lpii, lpio, lpmi, lpmo. 

The graphical representation (Figure 4) is a square. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Workstation representation 

3.1.3.2 Transport machines 

Every transport system (TS) has the same in/out port type and has a transport capacity 

(possibly variable in certain limits). 

3.1.3.2.1 Autonomous Guided Vehicles (AGV) 

Vehicles can move and are not permanently attached to a specific buffer. They have a 

single input port and an output port with which they can be attached to the corresponding 

ports of the same type buffers. They have associated: a material type; a current content, 

cc; a capacity, c; a list of transport operations, lopt. 



Public D3.3. Design method for the Factory of the Future 
 

 

 Page 12   
 

 

As a result, a transport machine of this category is: 

AGV=((i1, in),(i2, out),(t, in),(t, out), t, c, cc, lopt) 

A transport operation (abbreviated opt) is defined by: the start and stop buffers indexes 

(idin, idout); current quantity transported, ct; transport time between the buffers, tt. The 

mathematical formula is: 

opt =(idin, idout, ct, tt), with ctc 

OPT represents all possible transport operations and lopt is a list of transport operations. 

Their relation is: 

lopt P(OPT) 

The route can be defined as a series of segments with nodes between them. This allows 

investigating situations in which AGVs may intersect. 

The graphical representation of AGV (Figure 5) is a rectangle with round edges, together 

with the corresponding ports.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. AGV representation 

3.1.3.2.2 Conveyors, Belts, Pipes (CBP) 

Conveyors, belts, pipes have associated: a material type; a capacity, c; a transport time, 

tt: 

CBP = ( (i1, in), (i2, out), lpmi, lpmo, c, tt) 

The graphical representation (Figure 6) is a long and narrow rectangle with the 

corresponding ports. 
 
 
 
 
 
 
 
 
 

Figure 6. Conveyors, belts, pipes representation 

3.1.3.2.3 Manipulators 

 

MAN = ( (i1, in), (i2,out), lpmi, lpmo, lopt) 

The transport operation opt = (pi, po, ct, tt).  

The input port, pi, from which the manipulator takes the material m is: 

pi = (m, in) 

The output port, po, where the manipulator put the material m is: 

po=(m, out) 

m 
20:30 

m 20:30 
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ct is the current quantity transported, tt is the transport time between two ports. 

OPT represents all possible transport operations. 

lopt P(OPT) 

The graphical representation (Figure 7) is a circle inscribed in a square (to suggest a 

turntable transfer machine), with the corresponding ports. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Manipulator representation 

3.1.4 Command and control elements 

The command and control elements, ec, have only in/out information ports. 

ec = (lpii, lpio, ALG) 

ALG is the control algorithm for which several representation options can be considered 

(state diagram, Petri net) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Control element representation 

3.1.5 Flexible Manufacturing System 

3.1.5.1 Model 

A model of a flexible manufacturing system (FMS) is a structure: 

M = (WSs, AVGs, CBPs, MANs, EC, BF, fin, fout) 

where:  

- WSs is the workstation set; 

- AGVs is the vehicle-type transport equipment set (Automated Guided Vehicles); 

- CBPs is the conveyor, belt, pipe type transport equipment set; 

- MANs is the manipulator type transport equipment set; 
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- EC is the control elements set; 

- BFs is the buffers set; 

- fin:PIN→BF is the function that associates the input of each element with the 

corresponding buffer port; 

- fout:POUT→BF is the function that associates the output port of each element 

with the corresponding buffer;  

- PIN is the reunion of all input ports sets of all elements;  

- POUT is the reunion of all output ports sets of all elements. 

The type of port on the machine and the buffer must match. 

Also, the machine operation sequences will have to correspond to the current 

configuration (the buffers to which they are connected to). 

3.1.5.2 Example 

For example, we present the model of an installation that assembles the subassemblies 

produced by two production lines. For simplicity, the command elements were not 

represented. The graphical representation of the system is depicted in figure 9.  

 

Line 1 

The raw material is temporarily stored in the B1 bunker. From here, it is transported with 

AGV1. In figure 9, it is docked to B1. As long as it is docked and not full, AGV1 is loaded 

by itself from the B1 bunker through the m1 port. 

AGV1 runs between the bunker B1 and the bunker B7. Bunker B3 supplies the WS1 

workstation through the m1 port. 

The station is automatically loaded from the B1 hopper as long as there are parts/material 

m1 through the m1 type port. The processed parts / m3 intermediate material are unloaded 

through the m3 port into the B4 bunker. 

From here, the m3 material type is taken through the m3 type port by the BT1 transporting 

belt and placed in the B5 bunker through the m3 type port. The B5 bunker supplies the 

WS2 workstation through the m3 port. Station WS2 unloads m4 material through m4 port 

in bunker B6. 

 

Line 2 

The raw material is temporarily stored in the bunker B2. From here, it is transported with 

AGV2. AGV2 runs between the bunker B1 and the bunker B3. In the figure he is docked 

at B3. As long as it is docked and not empty, and the bunker B3 is not full AGV2 is 

unloaded by itself in the bunker B3 through the m2 port. 

Bunker B3 supplies the WS2 workstation through the m2 port. The WS2 station produces 

m5 type material which it unloads in the B8 bunker. 

 

Assembly 

The M1 manipulator alternatively takes material through the m4 and m5 type ports from 

the 2 production lines from the B6 and B8 bunkers. M1 transfers materials to B9 and B10 

bunkers according to their types. Bunkers B9 and B10 feed the WS4 station. The WS4 

station combines the two material types and produces the finished m6 material that it 

transfers to the B11 bunker. 
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Figure 9. Example of FMS representation 

3.2 Dynamic Aspect 

This part describes the behavior associated with the concepts. The symbols used here are 

the same as those used in chapter 3.1, summarized in Table 1. 

3.2.1 Buffers 

The buffers (Figure 10) have three states: empty (cc=0), partially loaded (0<cc<c), full 

(cc=c). The buffer responds to 2 commands on the information in port: „load” and 

„unload”. 

If the buffer is partially loaded, „load” increments cc, „unload” decrements cc. On the out 

port is issued „cc”. If the buffer is empty and receives "unload", it does not increment 

anything, just send "empty" on the information out port. If the buffer is full and receives 

"load", nothing is loaded, just "full" is send on the information out port. 

 

  
Figure 10. Behavior of the buffer 

BT1 

Line 1 

Assembly 

[cc==0] 
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Each load/unload operation has a duration. This can be the default and the same for all 

items of this type for simplicity, or it can be entered as an additional attribute.   

3.2.2 Machines 

Machines take materials through ports from buffers to which they are connected to ports 

and deposit materials through the output ports in the buffers to which they are connected. 

The machine transmits the "unload" command to the input buffer/buffers and the „load” 

command to the output buffer/buffers. 

In the example below (Figure 11), a general machine with a single input buffer and an 

output buffer is shown. Operation op1 requires n units in the input buffer and produces m 

units in the output buffer. When the op1 command appears on the input port, the machine 

tries to load from the input field n units – going into standby state when the buffer is 

completely emptied and resuming the load cycle when it is filled. Every step of the load 

cycles the machine sends the "unload" command to the buffer and reads the cc attribute 

of the buffer. After the machine is loaded with the units, the machine enters the processing 

state which has an associated duration. After the processing time is completed, the 

machine tries to unload in the output log m units – going into standby condition when the 

buffer fills completely and resuming the discharge cycle when emptying. Every step of 

the load cycles the machine sends the "load" command to the buffer and reads the cc 

attribute of the buffer. After the m units are loaded in the buffer, the machine enters the 

inactivity state (Idle) in which it can receive the following command. 

 

          

Figure 11. Behavior of a machine. n is the number of units to be unloaded from the 

input buffer; at each unload step, n is decremented (n--). m is the number of units to 

be loaded in the output buffer; at each load step, m is decremented (m--). 

3.2.2.1 Workstations 

The workstations act according to the current operation (op).  The particularity is that a 

machine can have multiple input buffers as a result several load processes may occur, that 

are carried out in parallel. Only after all materials are loaded into the corresponding 

quantities shall be passed into the processing phase. In the bottom representation (Figure 

12) we combined the notation from UML activity diagram (join fork on successive lanes) 

for a machine with two input buffers and one output.  Also, flexible machines can be (in 

the static representation) linked to several input buffers but for a particular operation they 

take materials only from some of them.  
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Figure 12. Behavioral state machine of the workstation 

3.2.2.2 Transport machines 

3.2.2.2.1 Autonomous guided vehicles (AGV)  

The peculiarity of AGV is that they have: 

- single input and output buffer 

- the same amount taken from the departure buffer and unloaded in the arrival buffer. 

As an attribute and position that means, the processing can be divided into at least two 

states (if only the starting and end positions) are considered undocking and docking. If 

more than one position is considered, each of these will be a state. The transition between 

them will be made on the basis of an order coming to the in-information port to allow 

control and synchronization of multiple AGPs.  In the picture we have an AGV that 

pendas between buffers p1 and p2. It is docked for charging (dock l). After loading, it 

depends from p1 and when it receives the transfer command, it is docked for unload to 

p2 (dock u). After it is emptied it depends from p2 and when it receives the return 

command it retransfers to p1 where it is docked for loading. 

 

  Idle 
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Figure 13. Behavior of an AGV 

 

3.2.2.2.2 Conveyers, Belts, Pipes 

In this case, the specific on/off command and the capacity of the transport system 

determine the total number of transported units. From the input buffer/buffers the 

quantities of material will be taken and be deposited with the delay corresponding to the 

selected speed in the input log. If they have multiple input ports, the streams will be 

aggregated. If there are multiple output ports, the streams will be split.  

In Figure 14, a conveyor with an input port and an output port is shown. The system loads 

and unloads at the same time. Any stop loading or unloading stops the conveyor. Only if 

both processes unlock, the travel process resumes. ccb stands for the belt's current 

capacity (current capacity of belt). The system can be further refined by considering 

independent loading and unloading, but this complicates the general scheme. 

 

Figure 14. Behavior of a CBP 
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3.2.2.2.3  Manipulators 

Each command specifies the quantity, port/buffer from which the port/buffer in which the 

materials are placed. The handler only functions if the source and destination are 

available. A handler that can transfer materials from buffer b1 to buffer b2 and alternately 

from b3 to b4 is shown in Figure 15.  

 

 
 

Figure 15. Behavior of a manipulator 

 

3.2.3 Command and control elements 

 

The control element executes the control algorithm stored in ALG. The control algorithm 

is described through a state machine or a Petri net. The program reads feedback messages 

from the process from the input ports or commands from other command items.  

Depending on the current status and inputs, commands are generated, that are placed at 

outputs. 

 

3.2.4 Basis for the graph grammar  

The behavior is expressed in the categorical MLMP trough graphs transformations 

We have 2 types of transformations: 

- Only the transformation of the displayed attributes is required. The interface 

must only display the new values of the attributes (Figure 16). With the 

exception of AGV all other types have only change of the attributes     

 

 

 

 

 

 

 

 

Figure 16. Graphical transformation of the attributes of a buffer (current quantity of 

material m). The arrow symbolizes the graphical transformation. 

 

- The transformation of the representation graph is required (Figure 17). The AGV 

module must be displayed first in the current position, that is the subgraph 

representing AGV is attached to the connection port of the B2 buffer, and then 

m 
20:30 

m 
25:30 
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moved to the new position – i.e. the subgraph must be removed and attached to 

the connection port of buffer B7 (Figure 17). Possibly these positions could be 

marked graphically as the parking spaces of the AGPs. 

-  

 

Figure 17. Graphical transformation of the structure 

 

Example of how all the different models play together → one big example scenario that 

links the different models. 
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4 Categorical specification of Modeling Language for 
Manufacturing Processes (MLMP) 

Specifying a language involves establishing a syntax, which is a possible set of syntactic 

elements accepted in linguistic constructions, establishing a semantic domain that gives 

meaning to those constructions, and mapping syntactic constructions to this semantic 

domain [Bork2020] [Karagiannis2016]. 

Therefore, specifying a language must contain a syntax, a semantic domain, and a 

mapping of syntactic constructions to the semantic domain. 

Although, at the level of language implementation, the first component specified is the 

syntax, in the designer's mind the semantics is what first appears, i.e. real concepts that 

underlie the constructions of the language and what these constructions mean. This is, in 

fact, the mechanism for the development of natural language, the significance of a concept 

first appears and then a syntactic notation is found for it, a notation needed in the 

communication process. 

The semantics of a language is essential, because semantics describe the meaning of a 

language, but computers do not offer any possibility of manipulating semantics directly. 

A modeling language must allow both the structure of a model and the behavior of the 

model to be specified. Therefore, such a language should allow both the syntax and 

semantics of the structure of a model to be specified, as well as the syntax and semantics 

of the behavior of that model. 

In this section we will use category theory to formally specify syntactic constructions, 

both structural and behavioral, with their syntax and semantics. 

4.1 Static model syntax 

MLMP is a graphical language for describing manufacturing processes at the level of 

manufacturing logic, easy to understand and use. 

Not any graph that has the nodes made of concepts specific to a manufacturing process 

(workstations, transport systems, collection buffers and ports) is a correct manufacturing 

model. For example, the graph must be connected and may not have more than one arc 

between two elements, etc. 

The categorical sketch that we will use to specify the abstract syntax of the modeling 

language is a tuple 𝓢=(𝓖, 𝓒(𝓖)) where 𝓖 is a graph and 𝓒(𝓖) is a set of constraints on the 

classes of objects represented by the graphs nodes [Barr2012] [Diskin2012] 

[Wolter2015]. The graph components will be mapped to the Set category by a functor. 

The Set category is a category that has as objects sets and as arcs functions between these 

sets. Thus, each node of the graph will be transformed, in the Set category, into a set of 

objects of the same type and each arc of the graph will be transformed into a function. 

The constraints defined by a categorical sketch will be imposed on the corresponding sets 

of objects and functions in the Set category. Therefore, when defining the graph of a 

sketch and the corresponding constraints we must bear in mind that they will be mapped 

into the Set category. In the first phase we will define the graph of the sketch in which 

each atomic concept is represented by a node. The arcs of the sketch are called the sketch 

operators and allow the conditions to be imposed on the graph structure of the models. 

We will define an MLMP model as a graph with a set of syntactic restrictions. These 

restrictions will then be introduced into the sketch of a modeling method metamodel 

based on mechanisms specific to the category theory such as commutative diagrams, 

limits and colimits and graph predicate signatures.  

Definition 4.1.1 A MLMP model is a directed graph 𝓖 = (X, , , ) where 
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X is a set of objects (concepts in our model) that represent the nodes of the graph. 

 is a set of arcs (connections in our model).  

And which satisfies the following properties: 

1. 𝓖 is a connected graph 

2. There is only one arc between any two nodes. 

3. On the set of nodes X we have a partition. This means that each node of type X of the 

graph will represent in the Set category a distinct set of objects of the same type and 

these sets are disjoint two by two. If we denote the disjoint union with ⊔ then:  

X=XWS ⊔XTS⊔XBF⊔XMP⊔XIP; 

where 

XWS is a set of workstations for the primary components;  

XTS is a set of transport systems for material components; 

XBF is a set of collection buffers for material components; 

XMP is a set of material ports; 

XIP is a set of information ports. 

4.  and  are functions ,:→X which assigns to each arc r the source and target 

objects (r), (r)X. Each node of type  from the graph of the sketch will represent 

in the Set category a set of arcs between the specific concepts of the models, a set 

characterized by the source concept and the target concept. Therefore,  is a subset of 

the union of all the pairs of concepts that interact with each other:  

(XWSXMP)(XMPXWS)(XBFXMP)(XMPXBF)(XTSXMP)(XMPXTS) 

(XIPXWS)(XIPXTS)(XIPXBF). 

The set  of arcs of a model is partitioned into disjoint subsets as follows: 

=WSMP⊔MPWS⊔BFMP⊔MPBFTSMPMPTS ⊔IPWS⊔IPTS⊔IPBF 

5. The XTS set is also partitioned into disjoint subsets:   
XTS = XAVG⊔XCBP⊔XMAN where  

XAVG  is a set of Autonomous Guided Vehicles 

XCBP  is a set of conveyors, belts, pipes 

XMAN  is a set of manipulators 

As we can see the syntactic definition of an MLMP model, introduces a series of partitions 

on the set of concepts and connections, subpartitions on the set of transport systems. In 

addition, the definition includes connection constraints and number of arcs between 

different types of nodes. 

4.1.1 Categorical sketch of MLMP 

Categorical sketches are not designed as a notation, but as a mathematical structure that 

incorporates an exact formal syntax and semantics. We will use the same notations for 

the arcs of the graph of the sketch and the functions from Set, and the nodes from the 

graph of the sketch we will denote with lowercase letters and the objects from Set we will 

denote with uppercase letters. 

 We could therefore consider the starting point in defining a sketch corresponding to the 

meta-model a graph with two nodes x,  and two parallel arcs  and . However, this 

sketch is too general and does not in any way account for the specifics and restrictions of 

each metamodel. 

Therefore, we need to introduce a series of helper objects and functions in the Set category 

to impose the constraints specific to each metamodel [Craciunean2018]. These helper 
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objects will be reflected in the sketch components (the graph of the sketch, commutative 

diagrams, cones and cocones).  

The language offered by the classical sketch allows a precise, compact and elegant 

specification of the properties of the graphical models based on nodes and arcs and offers 

a strong mathematical context for the verification and analysis of the models. 

However, the approach based on the classical sketch sometimes becomes too laborious 

especially because it requires the introduction of auxiliary elements and implies the 

definition from scratch of all the concepts involved in the model. 

These deficiencies were solved by introducing Generalized Sketches which are based on 

the observation that a labeled diagram is an analogous construction of a logical formula 

i.e. mapped to the components of a graph, i.e., to the nodes and arcs of a graph 

[Wolter2015] [Diskin2012] . This approach preserves the benefits offered by the classic 

sketch and adds the facilities offered by the first order logic (FOL). 

A predicate signature diagram is a tuple =(,ar) where  is a set of predicates and ar is 

a function ar:→Grf0 which maps each P to an object (graph) in the Grf category. 

The Grf category is the category that has as its object the set Grf0 of the graphs and as 

arcs the set Grf1 of the homomorphisms between these graphs. The graph ar(P) is called 

the shape graph arity of P. Shape graph arity becomes Shape graph for the diagrams in 

the classical sketch. This definition of the predicate signature allows the convenient 

specification of the logical constraints on the models at the level of the symbols involved 

in the signature of the predicates, constraints that will be reflected later on the models. 

We build the corresponding MLMP model sketch. We go from the general sketch 

corresponding to a directed multigraph with loops (Figure 18) and introduce the 

restrictions in the MLMP model defined above (Definition 4.1.1). We must have in mind 

the idea that this graph will be mapped into Set. We will denote the sets of objects 

corresponding to each node with the same letters but in uppercase and for the functions 

corresponding to the arcs we will use the same notation as with the arcs of the graph of 

the sketch. Therefore, ,  will sometimes symbolize arcs of the graph of the sketch and 

sometimes the functions of the corresponding Set category.  

 
Figure 18. 

 

We introduce the restrictions from the MLMP definition from above. 

i) 𝓖 is a connected graph. The pushout of  with  introduces an equivalence class 
that defines the set of connected components of the graph . For the graph to be 
connected we must have only one equivalence class, i.e. the set of equivalence classes  
has the cardinal one in Set. 

If we denote the pushout of  with  through x⊔x then x⊔y= (x⊔x)/, where   XX is 
the reflexive, symmetrical and transitive closure of the relation 0  defined as 
follows:  
x1 0 x2  12  i.e. x1=(12) and x2=(12) 
In the Set category the pushout of  with  is the colimit of the diagram from Figure 19. 

So, the colimit of the diagram in Figure 19 must to be a set with one element in Set 

category. 

x  

 

 
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The graph of the sketch must contain the subframe of Figure 19. 

We will use the following notation: Span(x,y,z,rzx,rzy) = (x
    𝑟𝑧𝑥    
←     z 

  𝑟𝑧𝑦    
→   y). 

We will therefore consider a predicate signature diagram =(,ar) where:  

={ P1(n1,n2,n3,r31,r32 )} and shape graph arity of P1,  ar(P1(n1,n2,n3,a31,a32 ))= 

Span(1,2,3,r31,r32) defined as:  ar(n1)=1, ar(n2)=2, ar(n3)=3, ar(a31)= r31, ar(a32)= r32.  

We then consider the diagram D1 defined by the functor:  

d1 : Span(1,2,3,r31,r32)→ Span(x,,z, ,) where d1(1)=x, d1(2)=y, d1(3)=z, d1(r31)= , 

d1(a32)= . In these conditions the predicate P1(n1,n2,n3,a31,a32 ) is defined as follows:  

P1(n1,n2,n3,a31,a32 )= |CoLim(D1)| = 1. 

where CoLim(D1) is colimit of the diagram D1 in Set. 

We will mark these predicate signatures with a suggestive label [Conex], which will then 

be used to mark the graph of the sketch. 

ii) Between any two nodes there is only one arc. This constraint can be defined by a 

predicate with the same shape graph arity, Span(x,y,z,rzx,rzy) = (x
    𝑟𝑧𝑥    
←     z 

  𝑟𝑧𝑦    
→   y).  This 

predicate can be defined as follows: 

P2(n1,n2,n3,a31,a32)=(i1,i2n3((a31(i1)=a31(i2)(a32(i1)=a32(i2)) i1=i2))  where the 

shape graph arity is ar:P2(n1,n2,n3,a31,a32)→Span(1,2,3,r31,r32)  defined thus ar(n1)=1, 

ar(n2)=2, ar(n3)=3, ar(a31)=r31, ar(a32)=r32.  

Therefore the diagrams D1 which maps shape graph arity to the graph of the sketch 

defined by the functor: d1:Span(1,2,3,r31,r32)→Span(x,x, ,,) where d2(1)=x, d2(2)=x, 

d2(3)=y, d2(r31)=  and d2(r32)= , remains valid, and in this case.  We will mark these 

predicate signatures with a suggestive label. In our case, such a label could be 

[NotMultiGraph]. These labels are then used to mark the graph of the sketch. 

If we add the P2 predicate to the signature =(,ar), it becomes:  

={P1,P2} and  ar(P1)= ar(P2)= Span(1,2,3,r31,r32). 

iii) On the set of nodes X we have a partition: 

On the set of nodes X we have a partition: X=XWS ⊔XTS⊔XBF⊔XMP⊔XIP where: 
XWP is a set of workstations for the primary components;  
XTS is a set of transport systems for material components; 
XBS is a set of collection buffers for material components; 
XMP is a set of material ports; 
XIP is a set of information ports. 

In other words, the set of objects X is the disjunctive union of three subsets of objects.  

This means that X is the coproduct of a discrete diagram consisting of five nodes. This 

discrete diagram is reflected in the graph of the sketch as in Figure 21. In the sketch of 

x  
 

 

x 

Figure 19 
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the model the disjoint union  is the colimit of a discrete diagram (cocone), Discrete(x1, 

…, xn)=( x1 … xn ). 

This constraint are imposed by the predicate P3(n, n1, n2, n3 n4, n5)=|CoLim(Discrete(n1, 

n2, n3 n4, n5)|=|n| with the graph signature ar:P3(n, n1, n2, n3 n4, 

n5)→Inclusion(6,Discrete(1,2,3,4,5)) where ar(n)=6, ar(n1)=1, ar(n2)=2, ar(n3)=3, 

ar(n4)=4, ar(n5)=5. We have denoted with Inclusion(x,Discrete(x,x1,x2,x3,x4,x5)) the 

graph in Figure 20, where 1, 2 , 3, 4, 5 are inclusion functions. We will mark this 

condition with the label [DisjointUnion5]. To map this graph signature to the graph of the 

sketch we will construct a diagram D2 defined by the functor:  

d2: Inclusion(6,Discrete(1,2,3,4,5))→Inclusion(x,Discrete(xws,xts,xbf,xmp,xip)) where: 

ar(6)=x, ar(1)=x1, ar(2)=x2, ar(3)=x3, ar(4)=x4, ar(5)=x5. 

 

 

iv)  =WSMP⊔MPWS⊔BFMP⊔MPBFTSMPMPTS ⊔IPWSIPTSIPBF .  

 

In the graph of the MLMP sketch we will have to include the following elements (Figure 

22.) in order to be able to condition  to be the coproduct of the WSMP, MPWS, BFMP, 

MPBF, TSMP, MPTS, IPWS, IPTS, IPBF sets.  
This constraint is similar to the previous one and are imposed by the predicate P4(n, n1, 
n2, n3 , n4, n5, n6, n7 , n8, n9)=|CoLim(Discrete(n1, n2, n3 , n4, n5, n6, n7 , n8, n9)|=|n| 
with the graph signature ar:P4(n, n1, n2, n3 , n4, n5, n6, n7 , n8, 
n9)→Inclusion(10,Discrete(1,2,3,4,5,6,7,8,9)) where ar(n)=10, ar(n1)=1, ar(n2)=2, 

ar(n3)=3, ar(n4)=4, ar(n5)=5, ar(n6)=6, ar(n7)=7, ar(n8)=8, ar(n9)=9. We will mark this 

condition with the label [DisjointUnion9]. To map this graph signature to the graph of the 

sketch we will construct a diagram D3 defined by the functor:  

d3:Inclusion(10,Discrete(1,2,3,4,5,6,7,8,9))→Inclusion(,Discrete(wsmp, mpws, tsmp, 
mpts, bfmp, mpbf, ipws, ipts ,ipbf)) where: 

ar(10)= , ar(1)= wsmp, ar(2)= mpws, ar(3)= tsmp, ar(4)= mpts, ar(5)= bfmp, ar(6)=mpbf, 
ar(7)=ipws, ar(8)=ipts , ar(9)=ipbf . 

 x 

  x1   x3 

1 

  x2 

Figure 20 

  x4   x5 


2
 

3
 

4
 
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 x 
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ws 
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v) XTS = XAVG⊔XCBP⊔XMAN where  

XAVG  is a set of Autonomous Guided Vehicles 

XCBP  is a set of conveyors, belts, pipelines 

XMAN  is a set of manipulators 

This constraint is similar to the previous one and are imposed by the predicate  

P5(n, n1, n2, n3)=|CoLim(Discrete(n1, n2, n3)|=|n| with the graph signature ar(P5(n, n1, 
n2, n3))=Inclusion(4,Discrete(1,2,3)) where ar(n)=4, ar(n1)=1, ar(n2)=2, ar(n3)=3. We 

will mark this condition with the label [DisjointUnion3]. To map this graph signature to 

the graph of the sketch we will construct a diagram D4 defined by the functor:  

d4: Inclusion(4,Discrete(1,2,3))→ Inclusion(xts,Discrete(xavg, xcbp, xman)) where: 

ar(4)= xts, ar(1)= xavg, ar(2)= xcbp, ar(3)= xman . 

The graph of the sketch will have to include the subgraph from Figure 23. 
 

 
We have presented the graph in a subgraph sequence, each subgraph having its role in the 

graph of the sketch. This graph can be presented in a single image as in Figure 24. 

Therefore the constraints imposed on the MLMP model determine a predicate signature 

diagram 

=(,ar)  where ={P1,P2,P3,P4,P5} and ar is a function ar:→Graph0 which maps each 

predicate P to an object in the Graph category, an object that is called shape graph 

arity ar(P). 

Then the -sketch corresponding to the signature  is a tuple 𝓢=(𝓖, 𝓢()) where 𝓖 is the 

graph in Figure 24 and 𝓢() is a family of diagram sets indexed by the set of predicates 

 

bfmp mpbf mpws wsmp tsmp mpts ipws 


bfmp

 
mpbf

 
tsmp

 
mpts

 

Figure 22 

ipts ipbf 


ipws

 
ipts

 
ipbf

 
mpws

 
wsmp

 

xts 

xavg xman 

 

avg man 

xcbp 

 


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Figure 23 
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marked ,  𝓢()={𝓢(P1),𝓢(P2),𝓢(P3),𝓢(P4),𝓢(P5)} where: 𝓢(P1)={(P1, d1:ar(P1)→𝓖)}, 

𝓢(P2)={(P2, d1:ar(P2)→𝓖)},  

𝓢(P3)={(P3, d2:ar(P3)→𝓖)}, 𝓢(P4)={(P4, d3:ar(P4)→𝓖)},(P5)={(P5, d4:ar(P5)→𝓖)}. 

A model of the sketch 𝓢=(𝓖,𝓢()) is the image of a functor M:𝓖→Set which validates 

the set of predicates Set()={ Set(P1), Set(P2), Set(P3), Set(P4), Set(P5)} where Set() is 

obtained from 𝓢g() as follows:  

Set(P1)={(P1,M◦d1:ar(P1)→𝓖)}, Set(P2)={(P2,M◦d1:ar(P2)→𝓖)}, 

Set(P3)={(P3,M◦d2:ar(P3)→𝓖)},  

Set(P4)={(P4,M◦d3:ar(P4)→𝓖)}, Set(P5)={(P5,M◦d4:ar(P5)→𝓖)}. 

 
 

4.1.2 Behavioral syntax of MLMP 

One of the key techniques in MDE for modeling the behavior of a system is the 

transformation of the model. This technique is also successfully used for the automation 

of other model management operations, such as code generation, model optimization, 

translation from one DSML to another, simulation, etc. In the case of diagrammatic 

models, the transformation of the models is based on the transformation of graphs, which 
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is a formal approach to structural changes of graphs by applying transformation rules 

[Plump2019] [Plump2010]. A graph rule, also called the production p=(L,R), is 

composed of two graphs; a left graph L, a right graph R and a mechanism that specifies 

the conditions and how to replace L with R. 

Although, in our case, the behavioral model is not based on structural transformations of 

the graph, but on changes of attribute values, we will use graph transformations because 

they provide the necessary context to locate the components involved in a transformation 

and to locate the critical regions that will be defined for parallel behavioral 

transformations. 

The double pushout (DPO)  or single pushout (SPO) approaches, are transformations in 

successive steps of the left graph to the right graph  [Plump2010] [Plump2019] 

[Ehrig2015]. 

We will specify the behavior of the MLMP model, with DPO graph transformations. 

The transformation rules express local changes of the graphs and are therefore very 

suitable to describe the local transformations of the model states, on which the description 

of its behavior is based. A graph transformation rule is a formal concept that precisely 

defines the model's behavior through preconditions, postconditions and transformation 

steps ordered only by the causal dependence of the actions, which facilitates the 

application of independent rules in an arbitrary order. 

In the double-pushout (DPO) variant, a graphical production is denoted p=(LK→R) 

and contains three graphs: a left graph L, a right graph R and an interface graph K 

contained both in R, and in L, where the arrows represent two total monomorphisms 

pL:K→L and pR:K→R. In this variant, a production p contains besides graphs L and R 

and a bonding graph K, also two total graphical monomorphisms. 

The application of a production p=(LK→R) to a graph G begins with the localization 

of an occurrence of L in G, given by a total match monomorphism m:L→G. Then we 

must construct on a graph D by deleting from G the difference between L and K, that is 

D=G\(L\K). The final graph H is obtained by joining to D the difference between R and 

K, that is H=D+(R\K). In order for D=G\(L\K) to become a graph in which all edges have 

a source and target, a certain bonding condition must be fulfilled, which leads to a well-

defined graph D. 

These graph transformations will be defined on the elements from the graph of the sketch 

in Figure 24. For the MLMP model, we have only two graph transformation rules 

p1==(L1

𝑙1
←K1

𝑟1
→R1) and p2==(L2

𝑙2
←K2

𝑟2
→R2) as we see in Figure 25 and Figure 26. 

 
Figure 25. Graph transformation p1  
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Suppose we have a class of models Mod(𝓢,Set) specified declaratively by a categorical 

sketch 𝓢. 

We consider that on the set of models Mod(𝓢,Set) we have defined the set of endogenous 

transformation rules GTS={p1,p2}. The transformation rules GTS, graphically illustrates 

a possible evolution of the model states. Obviously, to specify the behavior of a model by 

such transformations, after each step the obtained model must conform to the sketch 𝓢. 

4.1.3 Semantics of MLMP Language 

As we have seen, in principle, a static visual model is the image of a sketch 𝓢=(𝓖,𝓒(𝓖)) 

through a functor. In order to also define the behavior of a model it is necessary that the 

graph of the sketch be enriched besides the constraints (𝓖) also with types, attributes and 

behavioral rules. 

An important extension of the graph 𝓖 is the introduction of a type alphabet for nodes and 

a type alphabet for arcs, and assignment of types to each element of it [Ehrig2015] 

[Campbell2018] [Campbell2019]. Thus it becomes a type graph. We will consider in the 

following that the name of each type is identified with the name of the corresponding 

element of the sketch. 

Then the typing of a model M: 𝓢→Set is made by a tuple MT=(M;typeM) where typeM is 

a morphism from model M to the type graph 𝓖 thus defined typeM(X)=x where XM(x) 

and x is a node or arc of the graph 𝓖 of the sketch. Thus each element of a model will 

have a name and a type. We observe that the metamodel types can be similarly defined 

by a meta-metamodel. 

The states of a model will be defined by the values of some attributes associated with the 

nodes and edges of the graph of the structure of the model as well as the structure of the 

model. The evolution of the model is based on the modification of the structure of the 

model within the limits allowed by the constraints (𝓖) and on the modification of the 

values of the attributes within the limits allowed by their type. 

An attributed graph is a graph extended by attaching attributes to the nodes and edges of 

a graph, so that the nodes and edges can also be characterized by the attribute values. 

These attributes are represented by edges that link the nodes and arcs of the sketch graph 

to the corresponding data domain [Campbell2019]. 

In order to be able to define the behavior of a model at the metamodel level, we will now 

introduce the notions of signing a behavioral rule and signing a system of behavioral 

rules. 

The signature of a behavioral rule is a tuple  =(L
𝑙𝑠
←K

𝑟𝑠
→R,CL,Act,CR) where: 

L, K and R are attributed graphs L,K,RAGraph0, ls and rs are graph monomorphisms 

ls,rsAGraph1, 

Figure 26. Graph transformation p2  
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CL=(L,arL) is a diagram predicate signature such that arL:L→AGraph0, which we call 

the precondition signature. 

CR=(R,arR) is a diagram predicate signature such that arR:R→AGraph0, which we call 

the postcondition signature. 

Act is an action signature that specifies how to transform the elements of graph L which 

is the domain of action into the components of graph R which composes the codomain of 

the action. 

Act has the shape graph arity a tuple ar=(arL,arR), where arL(Act)=L and arR(Act)=R. To 

simplify the exposure we will sometimes write an action in the form of Act(L;R). If we 

consider that the elements of graph L, the nodes and arcs, are (x1,...,xm) and the elements 

of graph R are (y1,...,ym) then (y1,...,ym):=Act(x1,...,xm) and therefore we will denote the 

graph L with L(x1,...,xm), the graph R with R(y1,...,ym), the graph K with K(z1,...,zl) and 

an action also with Act(x1,...,xm; y1,...,ym). Most of the times in applications Act is a set 

of operations i:x1,...,xm→yi, i=1,…,m. 

The behavioral signature  is a set of behavioral rules signatures. 

To define the behavioral signatures of the MLMP language we consider the shape graphs 

G1(x1, x2, x3, x4, x5, x6, x7, x8, x9) from Figure 27 and G2(x2, x3, x6, x7, x8) from Figure 28. 

These shape graphs are essential for mapping the behavioral transformations to the 

component elements of a model, and they must be defined to represent the local graph 

structure of the model. In constructing a model we can have variable structures such as 

joints and forks with a variable number of branches. In our case we have a join structure 

with a variable number of inputs in the Xws component and therefore we will have to 

define a variable behavioral signature. We will represent these variable graph shapes as 

follows: 

G1(<***x7,x2,x6,x1>, <*x7,x2>, x3, x4, <****x7,x2,x6,x1,x5>, <**x7,x2,x6>, x7, x8,x9) and  

G2(<*x7,x2>, x3, <**x7,x2,x6>, x7, x8). 

with significance <*x7,x2>={ x2|(x2)= x7}; <**x7,x2,x6>={ x6| x<*x7,x2> i.e. (x)= 

x6};  

<***x7,x2,x6,x1>= { x1| x<**x7,x2,x6> i.e.  (x1)= x} and  

<****x7,x2,x6,x1,x5>={ x5| x<***x7,x2,x6,x1> i.e. (x)= x5}; 

The components specified with this notation will not be addressed by their name in the 

implementation of the transformation, but by indirectness relative to the basic component 

x7. 

With this notation we can define joins with a variable number of branches and therefore 

all the shape graphs required in the case of MLMP language (Figure 29 and Figure 30). 

In the case of the MLMP language, the behavioral signature is ={1,2}  where: 

1=(L1
𝑙𝑔
←K1

𝑟𝑔
→R1,𝐶𝐿

1 ,Act1, 𝐶𝑅
1) ; 2=(L2

𝑙𝑔
←K2

𝑟𝑔
→R2,𝐶𝐿

2,Act2, 𝐶𝑅
2); 

L1= R1= L2= R2= G1(<***7,2,6,1>,<*7,2>,3 ,4, <****7,2,6,1,5>,<**7,2,6>,7,8,9) ;  

K1 = K2 = G2(<*7,2>,3, <**7,2,6>,7,8); 

𝐶𝐿
1=(𝐿

1 ar𝐿
1);𝐿

1={P𝐿
1(1,2,<*7,3>,<***7,3,8,4>,5,6,7,<**7,3,8>,<****7,3,8,4,9>)};ar𝐿

1(

xi)=i,i=1,9; 

𝐶𝑅
1=(𝑅

1 ,ar𝑅
1);𝑅

1={P𝑅
1(1,2,<*7,3>,<***7,3,8,4>,5,6,7,<**7,3,8>,<****7,3,8,4,9>)};ar𝑅

1

(xi)=i,i=1,9;  

L2= R2=G1(1,2,3,4,5,6,7,8,9) ; K2 = G2(2,3,6,7,8); 

𝐶𝐿
2=(𝐿

2 , ar𝐿
2); 𝐿

2={P𝐿
2(x1, x2, x3, x4, x5, x6, x7, x8,x9)} ; ar𝐿

2(xi)=i, i=1,9; 

𝐶𝑅
2=(𝑅

2 , ar𝑅
2); 𝑅

2  ={ P𝑅
2(x1, x2, x3, x4, x5, x6, x7, x8,x9)}; ar𝑅

2(xi)=i, i=1,9;  

Act1: (<***x7,x2,x6,x1>, <*x7,x2>, x3, x4, <****x7,x2,x6,x1,x5>, <**x7,x2,x6>, x7, x8,x9)=  

Act1(<***x7,x2,x6,x1>, <*x7,x2>, x3, x4, <****x7,x2,x6,x1,x5>, <**x7,x2,x6>, x7, x8,x9); 

Act2: (x1, x2, x3, x4, x5, x6, x7, x8,x9)= Act2(x1, x2, x3, x4, x5, x6, x7, x8,x9); 
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In order to map the signature of a behavioral rule to the graph 𝓖 of the sketch 𝓢, we need 

a set of three diagrams DL, DK and DR defined by three functors dl, dk si dr, where dk is 

the restriction of the functors dl and dr at domain K; dk=dl/K=dr/K. 

In the case of the MLMP language for the signature of the rule p1 we have the diagrams 

(Figure 31): 

𝑑𝑙
1 : G1(<***7,2,6,1>,<*7,2>,3 ,4, <****7,2,6,1,5>,<**7,2,6>,7,8,9)→ G1(bfmp, mpws, 

wsmp, mpbf,  xbf, xmp, xws, xmp, xbf) defined as 𝑑𝑙
1(1)=bfmp; 𝑑𝑙

1(2)=mpws; 𝑑𝑙
1(3)=wsmp; 

𝑑𝑙
1(4)=mpbf; 𝑑𝑙

1(5)=xbf; 𝑑𝑙
1(6)=xmp; 𝑑𝑙

1(7)=xws; 𝑑𝑙
1(8)=xmp; 𝑑𝑙

1(9)=xbf; 

𝑑𝑟
1=𝑑𝑙

1 ; and 𝑑𝑘
1 : G2(<*7,2>,3, <**7,2,6>,7,8)→ G2(mpws, wsmp, xmp, xws, xmp)  defined 

as restriction 𝑑𝑘
1 =𝑑𝑙

1/K1; 

And for the signature of rule p2 we have the diagrams: 

𝑑𝑙
2 : G1(1,2,3,4,5,6,7,8,9)→ G1(bfmp, mpts, tsmp, mpbf, xbf, xmp, xts, xmp, xbf) defined as 

𝑑𝑙
2(1)=bfmp; 𝑑𝑙

2(2)=mpts; 𝑑𝑙
2(3)=tsmp; 𝑑𝑙

2(4)=mpbf; 𝑑𝑙
2(5)=xbf; 𝑑𝑙

2(6)=xmp; 𝑑𝑙
2(7)=xts; 

𝑑𝑙
2(8)=xmp; 𝑑𝑙

2(9)=xbf; 

𝑑𝑟
2=𝑑𝑙

2 ; and 𝑑𝑘
2 : G2(2,3,6,7,8)→ G2(mpts, tsmp, xmp, xts, xmp)  defined as restriction  𝑑𝑘

2 

=𝑑𝑙
2/K2; 

The diagrams are a mechanism for associating formal graph components, represented by 

shape graphs to actual components in the graph of the categorical sketch. 

In general, we can have more sets of diagrams and therefore we can have more behavioral 

rules at the metamodel level with the same behavioral signature. In our case, each 

signature of a behavioral rule generates a single behavioral rule at the sketch level. We 

will denote the set of behavioral rules induced by the behavioral signature  at the sketch 

level 𝓢 with (). In the case of MLMP language (Figure 30), ()={𝓢(1), 𝓢(2)} where: 

𝓢(1)=( 𝑑𝑙
1(L1)

𝑙𝑠
← 𝑑𝑘

1(K1)
𝑟𝑠
→ 𝑑𝑟

1(R1),{𝑃𝐿
1(𝑑𝑙

1(L1))},Act1(𝑑𝑙
1(L1); 𝑑𝑟

1(R1)), 𝑃𝑅
1(𝑑𝑟

1(R1)));  

𝓢(2)=( 𝑑𝑙
2(L2)

𝑙𝑠
← 𝑑𝑘

2(K2)
𝑟𝑠
→ 𝑑𝑟

2(R2),{𝑃𝐿
2(𝑑𝑙

2(L2))},Act2(𝑑𝑙
2(L2); 𝑑𝑟

2(R2)), 𝑃𝑅
2(𝑑𝑟

2(R2))); 

The total morphisms ls and rs are defined as follows: 

 ls(𝑑𝑘
1(n))= 𝑑𝑙

1(lg(n))  nK1  ;  lr(𝑑𝑘
1(n))= 𝑑𝑟

1(rg(n))  nK1 and respectively 

ls(𝑑𝑘
2(n))= 𝑑𝑙

2(lg(n))  nK2  ;  lr(𝑑𝑘
2(n))= 𝑑𝑟

2(rg(n))  nK2. 

To introduce the concept of behavioral model we need to first define the notion of 

matching a shape graph in its image through a functor in Set. 

If we have a graph 𝓖=(N, A, s, t) and a functor :𝓖→Set that associates to each node 

xiN, of the graph a set of objects (xi) and to each arc rA r:xi→xj , xjN, a function 

(xk):(xi)→(xj) then a matching of the graph 𝓖 in (𝓖) is a total monomorphism of 

graphs m:𝓖→(𝓖). 

Therefore, the image of a matching m of the graph 𝓖 in (𝓖) is a graph 𝓖m=(m(N), m(A), 

m(s), m(t)) so that yim(N) xiN with yi(xi) and aim(A) riN with 

ai(ri) respecting the conditions of homomorphism m(s(ri))=m(s)(m(ri)) and 

m(t(ri))=m(t)(m(ri)) for all riA. 

We will denote the set of graph matches 𝓖 in (𝓖) with m(,𝓖). 

We can now introduce the behavioral model of the sketch 𝓢=(𝓖,𝓒(𝓖)) that we call a 

behavioral model. A behavioral model consists of the set of all the behavioral 

transformations induced by the signatures of behavioral rules defined as above, that is, a 

behavioral signature .  

A behavioral model of the sketch, 𝓢 is an application MC: 𝓖 →Set defined by two functors 

ML:  𝓖→Set  and MR:  𝓖→Set, which maps each node of the graph 𝓖 in sets of classes of 

the type of the corresponding node and each arc of the graph 𝓖 in an appropriate function, 

and the set 𝓢() of behavioral rules becomes a set of behavioral rules in Set so 
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Set()={(t) | for each t𝓢() and each match mLm(ML∘dl,L), mKm(MK∘dK,K) and 

mRm(MR∘dR,R) so that, mL∘dl, mK∘dK, mR∘dR are diagrams}.   

More precisely, according to this definition in a behavioral model, for any behavioral 

transformation t𝓢() and for any pair of matches mLm(M𝐿
𝐶∘dL,L) and 

mRm(M𝑅
𝐶∘dR,R) we have rule 

(L
𝑙
←K

𝑟
→R,{P(mL∘dL∘ar(P))|PCL},Act(mL(dL(L);mR(dR(R)), {(P(mR∘dR∘ar(P))|PCR}) 

Set()  

where l(mK (o))=mK(ls(o)),  nK1  ; r(mK (o))=mK(rs(o)),  nK1  and mL∘dl, mK∘dK, 

mR∘dR are diagrams. Thus, the Set category endowed with these behavioral rules becomes 

the semantic universe of the behavioral model. We will call the application MC:→Set thus 

defined, behavioral model.  

Thus the set of behavioral rules Set() can be built automatically for each model specified 

by the sketch 𝓢. For MLMP the set of behavioral rules Set() is: 

Set()={11, 12, 13, 14, 21, 22, 23, 24, 25,} where 

11=((L11

𝑙
←K11

𝑟
→R11,P𝐿

1(A𝐿
11),Act(A𝐿

11; A𝑅
11),P𝑅

1(A𝑅
11)) where the following notations have 

been used: 

L11= R11=G1({24}, {23}, 22, 21,{B3},{P12},WS1,P11,B4); K11=G2({23}, 22, 

{P12},WS1,P11); 

A𝐿
11=A𝑅

11={24}, {23}, 22, 21,{B3},{P12},WS1,P11,B4; A𝐾
11={23}, 22, {P12},WS1,P11; 

12=((L12

𝑙
←K12

𝑟
→R12,P𝐿

1(A𝐿
12),Act(A𝐿

12; A𝑅
12),P𝑅

1(A𝑅
12)) where the following notations have 

been used: 

L12= R12=G1({16}, {15}, 14, 13,{B5},{P8},WS2,P7,B6); K12=G2({15}, 14, 

{P8},WS2,P7); 

A𝐿
12=A𝑅

12={16}, {15}, 14, 13,{B5},{P8},WS2,P7,B6 ; A𝐾
12={15}, 14, {P8},WS2,P7); 

13=((L13

𝑙
←K13

𝑟
→R13,P𝐿

1(A𝐿
13),Act(A𝐿

13; A𝑅
13),P𝑅

1(A𝑅
13)) where the following notations have 

been used: 

L13= R13=G1({5},{6},7,8,{B7},{P3},WS3,P4,B8); K13=G2({6},7,{P3},WS3,P4); 

A𝐿
13=A𝑅

13={5},{6},7,8,{B7},{P3},WS3,P4,B8 ; A𝐾
13={6},7,{P3},WS3,P4; 

In the case of the behavioral transformations 11, 12 and 13, the matching of the shape 

graph in the model from Figure 9 imposes on positions 1,2,5 and 6 sets with one element 

(Figure 31) because the shape graphs look like those in Figure 27 and Figure 28. 

14=((L14

𝑙
←K14

𝑟
→R14,P𝐿

1(A𝐿
14),Act(A𝐿

14; A𝑅
14),P𝑅

1(A𝑅
14)) where the following notations have 

been used:  

L14=R14=G1({33,34},{35,36},37,38,{B9,B10},{P17,P18},WS4,P19,B11);   

K14=G2({35,36},37, {P17,P18},WS4,P19); 

A𝐿
14=A𝑅

14={33,34},{35,36},37,38,{B9,B10},{P17,P18},WS4,P19,B11 ; 

 A𝐾
14={35,36},37, {P17,P18},WS4,P19;   

In the case of the behavioral transformation 14, the matching of the shape graph in the 

model from Figure 9  impose on positions 1, 2, 5 and 6 sets with two elements so that the 

shape graphs look like those in Figure 29 and Figure 30.  

21=((L21

𝑙
←K21

𝑟
→R21,P𝐿

2(A𝐿
21),Act(A𝐿

21; A𝑅
21),P𝑅

2(A𝑅
21)) where the following notations have 

been used: 

L21= R21=G1(28, 27, 26, 25,B1,P14,AVG1,P13,B3); K21=G2(27, 26, P14,AVG1,P13); 

A𝐿
21=A𝑅

21=28, 27, 26, 25,B1,P14,AVG1,P13,B3; A𝐾
21=27, 26, P14,AVG1,P13; 

22=((L22

𝑙
←K22

𝑟
→R22,P𝐿

2(A𝐿
22),Act(A𝐿

22; A𝑅
22),P𝑅

2(A𝑅
22)) where the following notations have 

been used: 
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L22= R22=G1(1, 2, 3, 4,B2,P1,AVG2,P2,B7); K22=G2(2, 3, P1,AVG2,P2); 

A𝐿
22=A𝑅

22=1, 2, 3, 4,B2,P1,AVG2,P2,B7; A𝐾
22=2, 3, P1,AVG2,P2; 

23=((L23

𝑙
←K23

𝑟
→R23,P𝐿

2(A𝐿
23),Act(A𝐿

23; A𝑅
22),P𝑅

2(A𝑅
23)) where the following notations have 

been used: 

L23= R23=G1(20, 19, 18, 17,B4,P10,AVG3,P9,B5); K23=G2(19, 18, P10,AVG3,P9); 

A𝐿
23=A𝑅

23=20, 19, 18, 17,B4,P10,AVG3,P9,B5; A𝐾
23=19, 18, P10,AVG3,P9; 

24=((L24

𝑙
←K24

𝑟
→R24,P𝐿

2(A𝐿
24),Act(A𝐿

24; A𝑅
24),P𝑅

2(A𝑅
24)) where the following notations have 

been used: 

L24= R24=G1(9, 10, 30, 32,B8,P5,M1,P16,B10); K24=G2(10, 30, P5,M1,P16); 

A𝐿
24=A𝑅

24=9, 10, 30, 32,B8,P5,M1,P16,B10; A𝐾
24=10, 30, P5,M1,P16; 

25=((L25

𝑙
←K25

𝑟
→R25,P𝐿

2(A𝐿
25),Act(A𝐿

25; A𝑅
25),P𝑅

2(A𝑅
25)) where the following notations have 

been used: 

L25= R25=G1(12, 11, 29, 31,B6,P6,M1,P15,B9); K25=G2(11, 29, P6,M1,P15); 

A𝐿
25=A𝑅

25=12, 11, 29, 31,B6,P6,M1,P15,B9; A𝐾
25=11, 29, P6,M1,P15; 
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Figure 27. Graph G1(x1, x2, x3, x4, x5, x6, x7, x8, x9) 
  

Figure 28. Graph G2(x2, x3, x6, x7, x8) 
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Figure 29. Graph G2(x2, x3, x6, x7, x8) 
 

Figure 30. Graph G2(x2, x3, x6, x7, x8) 
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Model transformation involves addressing two important aspects: defining 

transformations and applying these transformations. In MDE, the transformation of the 

models has as main objective the automatic generation of some models written in a target 

language based on models written in a source language according to the transformation 

rules. 

Applying a transformation rule specified by a behavioral signature 

=(L
𝑙𝑠
←K

𝑟𝑠
→R,CL,Act,CR) is done as follows: 

- We find a total matching morphism m:L→G (Figure 31). 

- The preconditions are verified, that is, the fulfillment of the predicates defined by 

the CL signatures, among which is the gluing condition. 

- The graph transformation defined by the cospan L
𝑙𝑠
←K

𝑟𝑠
→R is executed. 

- The Act action is executed. 

- The postcondition is verified, that is, the fulfillment of the predicates defined by 

the CR signatures. If the postconditions are not fulfilled the rule cannot be applied 

and rollback is performed. 

If a transformation rule appears several times in a model then it can be applied 

sequentially or in parallel several times. Also, if two different transformation rules are 

independent, they can be applied simultaneously. Graphic transformation systems can be 

non-deterministic, i.e. in a certain step there are several transformation rules that respect 

Figure 31. Graph  

Act( x1,      x2,      x3,      x4,      x5,      x6,      x7,      x8,      x9 ) 
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the conditions of application and one of them must be chosen or, there are several matches 

and one of them must be chosen. There are several techniques for controlling these 

situations. 

The dynamic behavior of an MLMP model over time is accomplished by generic 

algorithms that implement the behavioral transformations. The simulation begins by 

initializing the system with data describing its initial state. The dynamics of the system 

are accomplished by the succession of the behavioral transformations executed. The 

semantics of an MLMP defines how process tokens are propagated through the arcs and 

objects of a model. 

In the modeling method concept the simulation of a model is based on mechanisms and 

algorithms that are written in a programming language. The behavior of the model is 

described by rules that specify how expressions are evaluated and commands executed. 

These rules provide an operational semantic that provides a language implementation.  
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5 Conclusions 
 

The document describes the development of a modeling method and the associated 

DSML -  MLMP to be used in the design of a digital factory of the future. 

The first section summarizes the mathematical fundamentals of developing the modeling 

language and methods. Arguments are presented, sustaining the adequacy of the chosen 

mathematical instrument - category theory - for this task. 

These fundamentals are used in Section 2 to formalize the description of the static and 

dynamic aspects of a manufacturing process. On this basis, the development process for 

a modeling method described in [Karagiannis&Kühn2002] [Bork2019] was chosen. 

The elements of the MLMP - which is an essential aspect of the modelling method - are 

presented together with their graphical representation in Section 3. The elements are 

depicting conceptual building blocks used by professionals in the field of manufacturing 

processes to design manufacturing floor plans. An example of a model built from this 

elements is also provided. 

Section 4 describes the development of the metamodel of the MLMP 

The category theory is used to formally specify syntactic constructions of the language, 

both structural and behavioral. 

The developed metamodel will be used for the implementation of the design tool for the 

factory of the future. Although the presented case models only the base level of the 

Reference Archetecture Model for Industry 4.0 – RAMI 4.0 (Reference Architecture 

Industry 4.0) [Anderl2016]. The final design tool will support multiple levels of the 

architecture specification.  

They are at least two ways of supporting multiple views/ abstraction levels in the 

modeling and design tools. One is to use a unique model including all necessary elements 

and all their attributes of the modeled universe. Each view is then filtering the specific 

elements. 

The other way is to have distinct models for each view and consequently distinct 

modelling languages and modelling tools for each view. The aggregating tool should 

allow the coupling of the models trough defined interfaces and the simulation of the whole 

universe.  

The decision will be taken in the tool design phase. The present document will be then 

supplemented with the description of additional elements and attributes or of the 

additional languages and model interconnecting interfaces. 
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7 Annex A. List of Abbreviations  
 

 
 
DSL Domain Specific Language 

DSML Domain Specific Modeling Language 

FOL First Order Logic 

MDE Model-Driven Engineering 

MLMP Modeling Language for Manufacturing Processes 

DPO Double PushOut 

SPO Single PushOut 

BPMN Business Process Model and Notation 

EPC Event-driven Process Chain 

UML Unified Modeling Language 

 
 
 
 
 
 
 
 
 
 


