
Project Title:
THE FOF-DESIGNER:

DIGITAL DESIGN SKILLS FOR FACTORIES OF THE FUTURE

Project Acronym:
DigiFoF

Grant Agreement number:
2018-2553 / 001-001

Project Nr. 601089-EPP-1-2018-1-RO-EPPKA2-KA

Subject:
D.3.3 Design Method for the Factory of the Future1

Dissemination Level:

Public

Lead Organisation:
ULBS

Project Coordinator:

ULBS

Contributors:
UNIBIAL, BOC, OMiLAB

Reviewers:
OMiLAB

Revision Preparation date Period covered Project start date Project duration

V1 February 2020 Month 4 -14 01/01/2019 36 Months

This project has received funding from the European Union’s EACEA Erasmus+ Programme Key
Action 2 - Knowledge Alliances under the Grant Agreement No 2018-2533 / 001-001

1 “Any communication or publication related to the action, made by the beneficiaries jointly or individually

in any form and using any means, shall indicate that it reflects only the author's view and that the Agency

and the Commission are not responsible for any use that may be made of the information it contains.”

Public D3.3. Design method for the Factory of the Future

 Page 2

Table of contents
1 Introduction ... 3

2 Formalizing the concept of modelling method ... 4

3 Defining the Modeling Language for Manufacturing Processes 6
3.1 Static aspects .. 6

3.1.1 Ports .. 9
3.1.2 Buffers .. 10
3.1.3 Machines ... 10

3.1.3.1 Workstations.. 11

3.1.3.2 Transport machines ... 11

3.1.3.2.1 Autonomous Guided Vehicles (AGV) .. 11

3.1.3.2.2 Conveyors, Belts, Pipes (CBP) ... 12

3.1.3.2.3 Manipulators ... 12

3.1.4 Command and control elements ... 13
3.1.5 Flexible Manufacturing System ... 13

3.1.5.1 Model .. 13

3.1.5.2 Example ... 14

3.2 Dynamic Aspect .. 15

3.2.1 Buffers .. 15
3.2.2 Machines ... 16

3.2.2.1 Workstations.. 16

3.2.2.2 Transport machines ... 17

3.2.2.2.1 Autonomous guided vehicles (AGV) ... 17

3.2.2.2.2 Conveyers, Belts, Pipes .. 18

3.2.2.2.3 Manipulators ... 19

3.2.3 Command and control elements ... 19

3.2.4 Basis for the graph grammar .. 19

4 Categorical specification of Modeling Language for Manufacturing Processes
(MLMP) .. 21

4.1 Static model syntax .. 21

4.1.1 Categorical sketch of MLMP ... 22

4.1.2 Behavioral syntax of MLMP .. 27

4.1.3 Semantics of MLMP Language .. 29

5 Conclusions ... 36

6 References .. 37

7 Annex A. List of Abbreviations... 39

Public D3.3. Design method for the Factory of the Future

 Page 3

1 Introduction

The complexity of manufacturing processes is steadily increasing. This complexity makes

it impossible for manufacturing process supervision to be mastered by classical methods.

Computerization is thus involved in the supervision and management of all organizational

activities of companies. Computerization involves choosing and using an available tool

for modelling, simulation and process analysis.

The variety of modeling processes, often, makes it necessary to implement specific

modelling tools. The first phase of this process is the specification and implementation of

the Modelling Method over a metamodeling platform.

The language specific to a Modelling Method [Karagiannis2002] relies heavily on

graphic elements. In order to represent the properties of the models in the form of

specifications, it is important to build the most appropriate language to enable these

specifications to be written in a very clear and simple form.

A category [Barr2012] as well as a model is a mixture of graphical information and

algebraic operations. Therefore, category language seems to be the most general to

describe the models [Milner2009]. It can provide us with the features that must

characterize both the Domain Specific Language (DSL) and the Modelling Method

concept.

The theory of categories works with patterns or forms in which each of these forms

describe different aspects of the real world. Category theory offers both, a language, and

a lot of conceptual tools to efficiently handle models.

An important aspect of manufacturing process models is building complex functions from

a given set of simple functions, using different operations on functions such as

composition and repeat composition. Category theory is exactly the right algebra for such

constructions.

Since category theory is an abstract algebra of functions, we can consider categories that

are purely formal and do not necessarily consist of functions in the sense of the

mathematical definition. These are the syntactic part of the models. Programs and

languages are formal constructions that are intended to describe or specify formal

functions. The category theory is well adapted to deal with the relationship between

syntax and semantics.

Many system (process) properties can be unified and simplified through an arrow diagram

presentation (graphs). The category theory provides the ideal framework for such

constructions.

What characterizes a modelling language is primarily expressivity, but the language of

categories is one of the most expressive languages of mathematics.

We will specify both the concept of modelling method and that of multi-level modelling

in the language of the category. This approach provides us with information about the

facilities that a metamodeling language must provide in order to be able to specify such

models.

To specify the syntax of a graphical metamodel we will use a categorical sketch, which

in turn is represented in a graphical language.

Public D3.3. Design method for the Factory of the Future

 Page 4

2 Formalizing the concept of modelling method

We understand a manufacturing process as a behavior model of a dynamic system at a

certain level of abstraction. While a sequential system performs a single step at a time

and can therefore be characterized by a single current state, the different components of

a concurrent system may be in different local states at a time, which together make up the

global state of the system at a time.

The behavior of the system is given by several processes that are executed simultaneously

(parallel and distributed), where these processes exchange data to influence each other's

evolution.

A process is a sequence of steps that define behavior. There are several approaches to the

notion of step, which leads to as many different types of behavior.

Labeled transition systems are the most commonly used models for competing process

semantics, and are essential for process algebras, where processes typically receive a

semantic as labeled transition systems.

In this sense, one step is a triplet (s1, , s2) where  is a label of an action, which is an

element of a certain set of actions, and s1 and s2 are states from a set of states.

Thus, a manufacturing process can be defined as a graph P, whose nodes are the states in

which the system can be at a given moment of operation, and the arcs of the graph P have

labels representing actions that can be executed by the simulated system. An execution

of process P is described by a movement along the arcs of graph P from one state to the

other. Execution starts from a distinct state called initial state.

The theoretical mechanism most used for modeling processes is the transition system.

Transition systems are mechanisms with a well-defined syntax and semantics, but become

impossible to use in competing systems. For this reason, many other higher-level

languages such as Petri Nets, Business Process Model and Notation (BPMN), Event-

driven Process Chain (EPC), Unified Modeling Language (UML), etc. are used in

practice. These models describe the processes in terms of activities ordered through casual

dependencies [Craciunean2018] [Craciunean2019]. A mechanism that can be the base of

such a metamodel is the concept of modeling method.
A modeling method however is a concept [Karagiannis&Kühn2002] [Bork2019] that

consists of two components: (1) a modeling technique, which is divided in a modeling

language and a modeling procedure, and (2) mechanisms & algorithms working on the

models described by a modeling language. The modeling language contains the elements

with which a model can be described. The modeling procedure describes the steps

applying the modeling language to create results, i.e., models. Algorithms and

mechanisms provide “functionality to use and evaluate” models described by a modeling

language. Combining these functionalities enables the structural analysis, as well as

simulation of models.

Essentially, a modeling method relies heavily on the graphical notation. The sketch L1

that we will define in this section is generating the basic concepts for describing the

models and the appropriate graphical notation. The modeling procedure describes the

steps to be followed in applying the modeling language to create results, i.e. patterns.

Algorithms and mechanisms provide functionality for the use and evaluation of models

described by a modeling language. This functionality is given by the processes that act

on models to change their state. Combining these functionalities allows structural analysis

as well as the simulation of the models.

The essential part of a Modeling Method is the modeling language. In our approach, this

language is a Domain-Specific Language (DSL).

Public D3.3. Design method for the Factory of the Future

 Page 5

A DSL is a programming language that offers increased facilities for application

development in a domain [Fowler2010] [Karagiannis2016]. The point is that the concepts

and notation of such language are as close as possible to what we have in mind when we

are thinking about a solution in this area. A Domain-Specific Modeling Language

(DSML) is a DSL adapted to specify models.

In the Model Driven Engineering (MDE) conception, the development of DSMLs is an

integral part of the software modeling process. These DSMLs are, in general, graphic

languages adapted for specifying the models in a domain. Designing a new DSML

involves first interpreting the nodes and edges of a graph and then imposing domain-

specific constraints and assigning suggestive visual symbols to represent the concepts

involved in the models specific to the language in question.

Public D3.3. Design method for the Factory of the Future

 Page 6

3 Defining the Modeling Language for Manufacturing
Processes

The following sections describes the concepts and the design consideration for the

Categorical Modeling Method proposed namely the Modeling Language for

Manufacturing Processes (MLMP). They are a generalization of those presented in

[Mironescu2019].

3.1 Static aspects

This part describes the main language concepts. The symbols used are given in Table 1.

The graphical representations of the language concepts are presented in Table 2.

Table 1. Symbols used for the mathematical description of the modeling language

concepts

Symbol Meaning

AGV autonomous guided vehicles

AGVs vehicle-type transport equipment set

ALG the control algorithm for which several representation options can

be considered

BF buffer

BFs buffers set

c capacity (maximal content)

cc current content

ct current quantity transported

com command from the accepted set COM

COM set of orders accepted by machines (symbols accepted on the

information input port from the superior level)

CBP conveyors, belts, pipes

CBPs conveyor, belt, pipe type transport equipment set

ec command and control element

EC control elements set

fin function that associates the input of each element with the

corresponding buffer port

fout function that associates the output port of each element with the

corresponding buffer

FMS flexible manufacturing system

i information

I set of all possible types of information

IP information port

idin start buffer

idout stop buffer

lop list of technological operations that the machine can perform

lopt list of transport operations

lpii list of information in-port

lpio list of information in-port

lpmi list of material in-port

lpmo list of material out-port

Public D3.3. Design method for the Factory of the Future

 Page 7

m type of material

M set of all possible types of materials

MA machine

MAN manipulator

MANs manipulator type transport equipment set

MI list of input material-quantity pairs

MO list of output material-quantity pairs

MP material port

OP set of all possible technological operations

opt transport operation

OPT set of all possible transport operations

p port

pi input port from which the manipulator takes the material

po output port where the manipulator put the material

P set of ports

PIN reunion of all input ports sets of all elements

POUT reunion of all output ports sets of all elements

PMI set of materials input ports

PMO set of materials output ports

PII set of information input ports

PIO set of information output ports

s sense

S set of the two possible types of senses (in or out)

t type of port

ta action duration

tt transport time

T set of all possible types of ports

TC set of material-quantity pair

TS transport system

WS workstation

WSs workstation set

X set of objects (concepts) representing the graph nodes

XAGV set of Autonomous Guided Vehicles

XCBP set of conveyors, belts, pipes

XMAN set of manipulators

XBF set of collection buffers for material components

XIP set of information ports

XMP set of material ports

XTS set of transport systems for material components

XWS set of workstations for the primary components

Public D3.3. Design method for the Factory of the Future

 Page 8

Table 2. Graphical representation of the modeling language concepts

Graphical representation Meaning

Material type port

Information type port

Buffer

Workstation

Autonomous guided vehicles

Conveyors, belts, pipes

Manipulator

Control element

i

M

m

Public D3.3. Design method for the Factory of the Future

 Page 9

3.1.1 Ports

Every port p has a type and a direction. There are general classes, depending on what is

transmitted through the port. In this approach, we will use M and I as such classes. It

would be straightforward to extend the system to other types, too (e.g. Energy).

Within each class, labels can be declared that differentiate ports types:

• The material and information type label: mM, iI;

• The labels: T = M  I;

• The directions: S = {in, out};

• The ports P = {(t, s)  tT, sS} , P  TxS.

Every port has an in or out direction.

Graphical representation of the modeling language concepts are given in Figure 1. The

connection between the entities is represented as in Figure 2 and has the port type and the

sense on it.

a b

Figure 1. Material type port (a) and information type port (b). The triangle shows the

direction – the edge is pointed to the exterior (out port) or interior (in port) of the

entity that contains it. The label is written inside.

 a

b

Figure 2. Connection representation. a) disconnected; b) connected.

Important sets:

• PMI is a set of materials input ports:

PMI={(m,”in”) | mM} PMI  M x {„in”}

• PMO is a set of materials output ports:

PMO={(m,”out”) | mM} PMO  M x {„out”}

• PII is a set of information input ports:

PII={(i,”in”) | iI} PII  I x {„in”}

i

M
m

Public D3.3. Design method for the Factory of the Future

 Page 10

• PIO is a set of information output ports:

PIO={(i,”out”) | iI} PIO  I x {„out”}

3.1.2 Buffers

The buffers have: a type; a current content, cc = number of units (variable attribute); a

capacity, c (constant attribute, representing the maximal content).

The buffers have an input port and an output port for each material.

The mathematical description of a buffer is:

B = {(m, cc, c, (m, ”in”) ,(m,”out”), (i, ”in”) ,(i, ”out”))| tT, ccℕ , cℕ}

A buffer is an element of the Cartesian product:

B  T x ℕ x ℕ x PMI x PMO xPII x PIO

Figure 3 presents a buffer as circle with input and output ports for material and

information. In the center the type, current quantity and maximum quantity of material

contained are displayed.

Figure 3. Buffer representation. In this particular case, the type is m, current content is

20 and capacity is 30.

3.1.3 Machines

Every machine has associated:

▪ at least one in-port for information on which commands or signals are transferred;

▪ at least one out-port for information on which the machine sends responses or

commands;

▪ at least one in-port for materials;

▪ at least one out-port for materials.

Therefore, a definition of the abstract type from which all machines are derived, is:

MA = (lpii, lpio, lpmi, lpmo)

where:

- lpii is the list of information in-port: lpii  P(PII)∖;

- lpio is the list of information in-port: lpio  P(PIO)∖;

- lpmi is the list of material in-port: lpmi  P(PMI)∖;

- lpmo is the list of material out-port: lpmo  P(PMO)∖;

In these expressions, P(A) is the set of sub-sets of set A (where A is one of the

port sets: PII, PIO, PMI, PMO). P(A)∖ expresses the condition that the lists

should have at least one element.

m
20:30

Public D3.3. Design method for the Factory of the Future

 Page 11

3.1.3.1 Workstations

Every workstation (WS) has a list of technological operations (product capabilities).

Every technological operation contains: the type and the number of materials taken from

the feed buffers (MI); the number and type of materials that will be deposit in the output

buffers (MO); the duration of the operation (ta). This can be expressed mathematically as

following:

▪ The tuple (com, MI, MO, ta) is an tehnological operation, where:

- com is a command from the accepted set COM: comCOM ;

- COM is the set of orders accepted by machines (symbols accepted on the

information input port from the superior level);

- MI is a list of input material-quantity pairs: MI  P(TC);

- MO is a list of output material-quantity pairs: MO  P(TC);

- TC is the set of material-quantity pair:

TC= MN

where N is the natural number set;

- ta is the action duration: taN.

OP is the set of all possible technological operations.

lop is a list of technological operations that the machine can perform: lop P(OP).

The workstation WS = (lpii, lpio, lpmi, lpmo, lop)

The types of materials defined in each operation, in MI and MO must correspond to the

types of ports in lpii, lpio, lpmi, lpmo.

The graphical representation (Figure 4) is a square.

Figure 4. Workstation representation

3.1.3.2 Transport machines

Every transport system (TS) has the same in/out port type and has a transport capacity

(possibly variable in certain limits).

3.1.3.2.1 Autonomous Guided Vehicles (AGV)

Vehicles can move and are not permanently attached to a specific buffer. They have a

single input port and an output port with which they can be attached to the corresponding

ports of the same type buffers. They have associated: a material type; a current content,

cc; a capacity, c; a list of transport operations, lopt.

Public D3.3. Design method for the Factory of the Future

 Page 12

As a result, a transport machine of this category is:

AGV=((i1, in),(i2, out),(t, in),(t, out), t, c, cc, lopt)

A transport operation (abbreviated opt) is defined by: the start and stop buffers indexes

(idin, idout); current quantity transported, ct; transport time between the buffers, tt. The

mathematical formula is:

opt =(idin, idout, ct, tt), with ctc

OPT represents all possible transport operations and lopt is a list of transport operations.

Their relation is:

lopt P(OPT)

The route can be defined as a series of segments with nodes between them. This allows

investigating situations in which AGVs may intersect.

The graphical representation of AGV (Figure 5) is a rectangle with round edges, together

with the corresponding ports.

Figure 5. AGV representation

3.1.3.2.2 Conveyors, Belts, Pipes (CBP)

Conveyors, belts, pipes have associated: a material type; a capacity, c; a transport time,

tt:

CBP = ((i1, in), (i2, out), lpmi, lpmo, c, tt)

The graphical representation (Figure 6) is a long and narrow rectangle with the

corresponding ports.

Figure 6. Conveyors, belts, pipes representation

3.1.3.2.3 Manipulators

MAN = ((i1, in), (i2,out), lpmi, lpmo, lopt)

The transport operation opt = (pi, po, ct, tt).

The input port, pi, from which the manipulator takes the material m is:

pi = (m, in)

The output port, po, where the manipulator put the material m is:

po=(m, out)

m
20:30

m 20:30

Public D3.3. Design method for the Factory of the Future

 Page 13

ct is the current quantity transported, tt is the transport time between two ports.

OPT represents all possible transport operations.

lopt P(OPT)

The graphical representation (Figure 7) is a circle inscribed in a square (to suggest a

turntable transfer machine), with the corresponding ports.

Figure 7. Manipulator representation

3.1.4 Command and control elements

The command and control elements, ec, have only in/out information ports.

ec = (lpii, lpio, ALG)

ALG is the control algorithm for which several representation options can be considered

(state diagram, Petri net)

Figure 8. Control element representation

3.1.5 Flexible Manufacturing System

3.1.5.1 Model

A model of a flexible manufacturing system (FMS) is a structure:

M = (WSs, AVGs, CBPs, MANs, EC, BF, fin, fout)

where:

- WSs is the workstation set;

- AGVs is the vehicle-type transport equipment set (Automated Guided Vehicles);

- CBPs is the conveyor, belt, pipe type transport equipment set;

- MANs is the manipulator type transport equipment set;

Public D3.3. Design method for the Factory of the Future

 Page 14

- EC is the control elements set;

- BFs is the buffers set;

- fin:PIN→BF is the function that associates the input of each element with the

corresponding buffer port;

- fout:POUT→BF is the function that associates the output port of each element

with the corresponding buffer;

- PIN is the reunion of all input ports sets of all elements;

- POUT is the reunion of all output ports sets of all elements.

The type of port on the machine and the buffer must match.

Also, the machine operation sequences will have to correspond to the current

configuration (the buffers to which they are connected to).

3.1.5.2 Example

For example, we present the model of an installation that assembles the subassemblies

produced by two production lines. For simplicity, the command elements were not

represented. The graphical representation of the system is depicted in figure 9.

Line 1

The raw material is temporarily stored in the B1 bunker. From here, it is transported with

AGV1. In figure 9, it is docked to B1. As long as it is docked and not full, AGV1 is loaded

by itself from the B1 bunker through the m1 port.

AGV1 runs between the bunker B1 and the bunker B7. Bunker B3 supplies the WS1

workstation through the m1 port.

The station is automatically loaded from the B1 hopper as long as there are parts/material

m1 through the m1 type port. The processed parts / m3 intermediate material are unloaded

through the m3 port into the B4 bunker.

From here, the m3 material type is taken through the m3 type port by the BT1 transporting

belt and placed in the B5 bunker through the m3 type port. The B5 bunker supplies the

WS2 workstation through the m3 port. Station WS2 unloads m4 material through m4 port

in bunker B6.

Line 2

The raw material is temporarily stored in the bunker B2. From here, it is transported with

AGV2. AGV2 runs between the bunker B1 and the bunker B3. In the figure he is docked

at B3. As long as it is docked and not empty, and the bunker B3 is not full AGV2 is

unloaded by itself in the bunker B3 through the m2 port.

Bunker B3 supplies the WS2 workstation through the m2 port. The WS2 station produces

m5 type material which it unloads in the B8 bunker.

Assembly

The M1 manipulator alternatively takes material through the m4 and m5 type ports from

the 2 production lines from the B6 and B8 bunkers. M1 transfers materials to B9 and B10

bunkers according to their types. Bunkers B9 and B10 feed the WS4 station. The WS4

station combines the two material types and produces the finished m6 material that it

transfers to the B11 bunker.

Public D3.3. Design method for the Factory of the Future

 Page 15

Figure 9. Example of FMS representation

3.2 Dynamic Aspect

This part describes the behavior associated with the concepts. The symbols used here are

the same as those used in chapter 3.1, summarized in Table 1.

3.2.1 Buffers

The buffers (Figure 10) have three states: empty (cc=0), partially loaded (0<cc<c), full

(cc=c). The buffer responds to 2 commands on the information in port: „load” and

„unload”.

If the buffer is partially loaded, „load” increments cc, „unload” decrements cc. On the out

port is issued „cc”. If the buffer is empty and receives "unload", it does not increment

anything, just send "empty" on the information out port. If the buffer is full and receives

"load", nothing is loaded, just "full" is send on the information out port.

Figure 10. Behavior of the buffer

BT1

Line 1

Assembly

[cc==0]

Public D3.3. Design method for the Factory of the Future

 Page 16

Each load/unload operation has a duration. This can be the default and the same for all

items of this type for simplicity, or it can be entered as an additional attribute.

3.2.2 Machines

Machines take materials through ports from buffers to which they are connected to ports

and deposit materials through the output ports in the buffers to which they are connected.

The machine transmits the "unload" command to the input buffer/buffers and the „load”

command to the output buffer/buffers.

In the example below (Figure 11), a general machine with a single input buffer and an

output buffer is shown. Operation op1 requires n units in the input buffer and produces m

units in the output buffer. When the op1 command appears on the input port, the machine

tries to load from the input field n units – going into standby state when the buffer is

completely emptied and resuming the load cycle when it is filled. Every step of the load

cycles the machine sends the "unload" command to the buffer and reads the cc attribute

of the buffer. After the machine is loaded with the units, the machine enters the processing

state which has an associated duration. After the processing time is completed, the

machine tries to unload in the output log m units – going into standby condition when the

buffer fills completely and resuming the discharge cycle when emptying. Every step of

the load cycles the machine sends the "load" command to the buffer and reads the cc

attribute of the buffer. After the m units are loaded in the buffer, the machine enters the

inactivity state (Idle) in which it can receive the following command.

Figure 11. Behavior of a machine. n is the number of units to be unloaded from the

input buffer; at each unload step, n is decremented (n--). m is the number of units to

be loaded in the output buffer; at each load step, m is decremented (m--).

3.2.2.1 Workstations

The workstations act according to the current operation (op). The particularity is that a

machine can have multiple input buffers as a result several load processes may occur, that

are carried out in parallel. Only after all materials are loaded into the corresponding

quantities shall be passed into the processing phase. In the bottom representation (Figure

12) we combined the notation from UML activity diagram (join fork on successive lanes)

for a machine with two input buffers and one output. Also, flexible machines can be (in

the static representation) linked to several input buffers but for a particular operation they

take materials only from some of them.

Public D3.3. Design method for the Factory of the Future

 Page 17

Figure 12. Behavioral state machine of the workstation

3.2.2.2 Transport machines

3.2.2.2.1 Autonomous guided vehicles (AGV)

The peculiarity of AGV is that they have:

- single input and output buffer

- the same amount taken from the departure buffer and unloaded in the arrival buffer.

As an attribute and position that means, the processing can be divided into at least two

states (if only the starting and end positions) are considered undocking and docking. If

more than one position is considered, each of these will be a state. The transition between

them will be made on the basis of an order coming to the in-information port to allow

control and synchronization of multiple AGPs. In the picture we have an AGV that

pendas between buffers p1 and p2. It is docked for charging (dock l). After loading, it

depends from p1 and when it receives the transfer command, it is docked for unload to

p2 (dock u). After it is emptied it depends from p2 and when it receives the return

command it retransfers to p1 where it is docked for loading.

 Idle

Public D3.3. Design method for the Factory of the Future

 Page 18

Figure 13. Behavior of an AGV

3.2.2.2.2 Conveyers, Belts, Pipes

In this case, the specific on/off command and the capacity of the transport system

determine the total number of transported units. From the input buffer/buffers the

quantities of material will be taken and be deposited with the delay corresponding to the

selected speed in the input log. If they have multiple input ports, the streams will be

aggregated. If there are multiple output ports, the streams will be split.

In Figure 14, a conveyor with an input port and an output port is shown. The system loads

and unloads at the same time. Any stop loading or unloading stops the conveyor. Only if

both processes unlock, the travel process resumes. ccb stands for the belt's current

capacity (current capacity of belt). The system can be further refined by considering

independent loading and unloading, but this complicates the general scheme.

Figure 14. Behavior of a CBP

Public D3.3. Design method for the Factory of the Future

 Page 19

3.2.2.2.3 Manipulators

Each command specifies the quantity, port/buffer from which the port/buffer in which the

materials are placed. The handler only functions if the source and destination are

available. A handler that can transfer materials from buffer b1 to buffer b2 and alternately

from b3 to b4 is shown in Figure 15.

Figure 15. Behavior of a manipulator

3.2.3 Command and control elements

The control element executes the control algorithm stored in ALG. The control algorithm

is described through a state machine or a Petri net. The program reads feedback messages

from the process from the input ports or commands from other command items.

Depending on the current status and inputs, commands are generated, that are placed at

outputs.

3.2.4 Basis for the graph grammar

The behavior is expressed in the categorical MLMP trough graphs transformations

We have 2 types of transformations:

- Only the transformation of the displayed attributes is required. The interface

must only display the new values of the attributes (Figure 16). With the

exception of AGV all other types have only change of the attributes

Figure 16. Graphical transformation of the attributes of a buffer (current quantity of

material m). The arrow symbolizes the graphical transformation.

- The transformation of the representation graph is required (Figure 17). The AGV

module must be displayed first in the current position, that is the subgraph

representing AGV is attached to the connection port of the B2 buffer, and then

m
20:30

m
25:30

Public D3.3. Design method for the Factory of the Future

 Page 20

moved to the new position – i.e. the subgraph must be removed and attached to

the connection port of buffer B7 (Figure 17). Possibly these positions could be

marked graphically as the parking spaces of the AGPs.

-

Figure 17. Graphical transformation of the structure

Example of how all the different models play together → one big example scenario that

links the different models.

Public D3.3. Design method for the Factory of the Future

 Page 21

4 Categorical specification of Modeling Language for
Manufacturing Processes (MLMP)

Specifying a language involves establishing a syntax, which is a possible set of syntactic

elements accepted in linguistic constructions, establishing a semantic domain that gives

meaning to those constructions, and mapping syntactic constructions to this semantic

domain [Bork2020] [Karagiannis2016].

Therefore, specifying a language must contain a syntax, a semantic domain, and a

mapping of syntactic constructions to the semantic domain.

Although, at the level of language implementation, the first component specified is the

syntax, in the designer's mind the semantics is what first appears, i.e. real concepts that

underlie the constructions of the language and what these constructions mean. This is, in

fact, the mechanism for the development of natural language, the significance of a concept

first appears and then a syntactic notation is found for it, a notation needed in the

communication process.

The semantics of a language is essential, because semantics describe the meaning of a

language, but computers do not offer any possibility of manipulating semantics directly.

A modeling language must allow both the structure of a model and the behavior of the

model to be specified. Therefore, such a language should allow both the syntax and

semantics of the structure of a model to be specified, as well as the syntax and semantics

of the behavior of that model.

In this section we will use category theory to formally specify syntactic constructions,

both structural and behavioral, with their syntax and semantics.

4.1 Static model syntax

MLMP is a graphical language for describing manufacturing processes at the level of

manufacturing logic, easy to understand and use.

Not any graph that has the nodes made of concepts specific to a manufacturing process

(workstations, transport systems, collection buffers and ports) is a correct manufacturing

model. For example, the graph must be connected and may not have more than one arc

between two elements, etc.

The categorical sketch that we will use to specify the abstract syntax of the modeling

language is a tuple 𝓢=(𝓖, 𝓒(𝓖)) where 𝓖 is a graph and 𝓒(𝓖) is a set of constraints on the

classes of objects represented by the graphs nodes [Barr2012] [Diskin2012]

[Wolter2015]. The graph components will be mapped to the Set category by a functor.

The Set category is a category that has as objects sets and as arcs functions between these

sets. Thus, each node of the graph will be transformed, in the Set category, into a set of

objects of the same type and each arc of the graph will be transformed into a function.

The constraints defined by a categorical sketch will be imposed on the corresponding sets

of objects and functions in the Set category. Therefore, when defining the graph of a

sketch and the corresponding constraints we must bear in mind that they will be mapped

into the Set category. In the first phase we will define the graph of the sketch in which

each atomic concept is represented by a node. The arcs of the sketch are called the sketch

operators and allow the conditions to be imposed on the graph structure of the models.

We will define an MLMP model as a graph with a set of syntactic restrictions. These

restrictions will then be introduced into the sketch of a modeling method metamodel

based on mechanisms specific to the category theory such as commutative diagrams,

limits and colimits and graph predicate signatures.

Definition 4.1.1 A MLMP model is a directed graph 𝓖 = (X, , , ) where

Public D3.3. Design method for the Factory of the Future

 Page 22

X is a set of objects (concepts in our model) that represent the nodes of the graph.

 is a set of arcs (connections in our model).

And which satisfies the following properties:

1. 𝓖 is a connected graph

2. There is only one arc between any two nodes.

3. On the set of nodes X we have a partition. This means that each node of type X of the

graph will represent in the Set category a distinct set of objects of the same type and

these sets are disjoint two by two. If we denote the disjoint union with ⊔ then:

X=XWS ⊔XTS⊔XBF⊔XMP⊔XIP;

where

XWS is a set of workstations for the primary components;

XTS is a set of transport systems for material components;

XBF is a set of collection buffers for material components;

XMP is a set of material ports;

XIP is a set of information ports.

4.  and  are functions ,:→X which assigns to each arc r the source and target

objects (r), (r)X. Each node of type  from the graph of the sketch will represent

in the Set category a set of arcs between the specific concepts of the models, a set

characterized by the source concept and the target concept. Therefore,  is a subset of

the union of all the pairs of concepts that interact with each other:

(XWSXMP)(XMPXWS)(XBFXMP)(XMPXBF)(XTSXMP)(XMPXTS)

(XIPXWS)(XIPXTS)(XIPXBF).

The set  of arcs of a model is partitioned into disjoint subsets as follows:

=WSMP⊔MPWS⊔BFMP⊔MPBFTSMPMPTS ⊔IPWS⊔IPTS⊔IPBF

5. The XTS set is also partitioned into disjoint subsets:
XTS = XAVG⊔XCBP⊔XMAN where

XAVG is a set of Autonomous Guided Vehicles

XCBP is a set of conveyors, belts, pipes

XMAN is a set of manipulators

As we can see the syntactic definition of an MLMP model, introduces a series of partitions

on the set of concepts and connections, subpartitions on the set of transport systems. In

addition, the definition includes connection constraints and number of arcs between

different types of nodes.

4.1.1 Categorical sketch of MLMP

Categorical sketches are not designed as a notation, but as a mathematical structure that

incorporates an exact formal syntax and semantics. We will use the same notations for

the arcs of the graph of the sketch and the functions from Set, and the nodes from the

graph of the sketch we will denote with lowercase letters and the objects from Set we will

denote with uppercase letters.

 We could therefore consider the starting point in defining a sketch corresponding to the

meta-model a graph with two nodes x,  and two parallel arcs  and . However, this

sketch is too general and does not in any way account for the specifics and restrictions of

each metamodel.

Therefore, we need to introduce a series of helper objects and functions in the Set category

to impose the constraints specific to each metamodel [Craciunean2018]. These helper

Public D3.3. Design method for the Factory of the Future

 Page 23

objects will be reflected in the sketch components (the graph of the sketch, commutative

diagrams, cones and cocones).

The language offered by the classical sketch allows a precise, compact and elegant

specification of the properties of the graphical models based on nodes and arcs and offers

a strong mathematical context for the verification and analysis of the models.

However, the approach based on the classical sketch sometimes becomes too laborious

especially because it requires the introduction of auxiliary elements and implies the

definition from scratch of all the concepts involved in the model.

These deficiencies were solved by introducing Generalized Sketches which are based on

the observation that a labeled diagram is an analogous construction of a logical formula

i.e. mapped to the components of a graph, i.e., to the nodes and arcs of a graph

[Wolter2015] [Diskin2012] . This approach preserves the benefits offered by the classic

sketch and adds the facilities offered by the first order logic (FOL).

A predicate signature diagram is a tuple =(,ar) where  is a set of predicates and ar is

a function ar:→Grf0 which maps each P to an object (graph) in the Grf category.

The Grf category is the category that has as its object the set Grf0 of the graphs and as

arcs the set Grf1 of the homomorphisms between these graphs. The graph ar(P) is called

the shape graph arity of P. Shape graph arity becomes Shape graph for the diagrams in

the classical sketch. This definition of the predicate signature allows the convenient

specification of the logical constraints on the models at the level of the symbols involved

in the signature of the predicates, constraints that will be reflected later on the models.

We build the corresponding MLMP model sketch. We go from the general sketch

corresponding to a directed multigraph with loops (Figure 18) and introduce the

restrictions in the MLMP model defined above (Definition 4.1.1). We must have in mind

the idea that this graph will be mapped into Set. We will denote the sets of objects

corresponding to each node with the same letters but in uppercase and for the functions

corresponding to the arcs we will use the same notation as with the arcs of the graph of

the sketch. Therefore, ,  will sometimes symbolize arcs of the graph of the sketch and

sometimes the functions of the corresponding Set category.

Figure 18.

We introduce the restrictions from the MLMP definition from above.

i) 𝓖 is a connected graph. The pushout of  with  introduces an equivalence class
that defines the set of connected components of the graph . For the graph to be
connected we must have only one equivalence class, i.e. the set of equivalence classes
has the cardinal one in Set.

If we denote the pushout of  with  through x⊔x then x⊔y= (x⊔x)/, where  XX is
the reflexive, symmetrical and transitive closure of the relation 0 defined as
follows:
x1 0 x2  12  i.e. x1=(12) and x2=(12)
In the Set category the pushout of  with  is the colimit of the diagram from Figure 19.

So, the colimit of the diagram in Figure 19 must to be a set with one element in Set

category.

x 





Public D3.3. Design method for the Factory of the Future

 Page 24

The graph of the sketch must contain the subframe of Figure 19.

We will use the following notation: Span(x,y,z,rzx,rzy) = (x
 𝑟𝑧𝑥
← z

 𝑟𝑧𝑦
→ y).

We will therefore consider a predicate signature diagram =(,ar) where:

={ P1(n1,n2,n3,r31,r32)} and shape graph arity of P1, ar(P1(n1,n2,n3,a31,a32))=

Span(1,2,3,r31,r32) defined as: ar(n1)=1, ar(n2)=2, ar(n3)=3, ar(a31)= r31, ar(a32)= r32.

We then consider the diagram D1 defined by the functor:

d1 : Span(1,2,3,r31,r32)→ Span(x,,z, ,) where d1(1)=x, d1(2)=y, d1(3)=z, d1(r31)= ,

d1(a32)= . In these conditions the predicate P1(n1,n2,n3,a31,a32) is defined as follows:

P1(n1,n2,n3,a31,a32)= |CoLim(D1)| = 1.

where CoLim(D1) is colimit of the diagram D1 in Set.

We will mark these predicate signatures with a suggestive label [Conex], which will then

be used to mark the graph of the sketch.

ii) Between any two nodes there is only one arc. This constraint can be defined by a

predicate with the same shape graph arity, Span(x,y,z,rzx,rzy) = (x
 𝑟𝑧𝑥
← z

 𝑟𝑧𝑦
→ y). This

predicate can be defined as follows:

P2(n1,n2,n3,a31,a32)=(i1,i2n3((a31(i1)=a31(i2)(a32(i1)=a32(i2)) i1=i2)) where the

shape graph arity is ar:P2(n1,n2,n3,a31,a32)→Span(1,2,3,r31,r32) defined thus ar(n1)=1,

ar(n2)=2, ar(n3)=3, ar(a31)=r31, ar(a32)=r32.

Therefore the diagrams D1 which maps shape graph arity to the graph of the sketch

defined by the functor: d1:Span(1,2,3,r31,r32)→Span(x,x, ,,) where d2(1)=x, d2(2)=x,

d2(3)=y, d2(r31)=  and d2(r32)= , remains valid, and in this case. We will mark these

predicate signatures with a suggestive label. In our case, such a label could be

[NotMultiGraph]. These labels are then used to mark the graph of the sketch.

If we add the P2 predicate to the signature =(,ar), it becomes:

={P1,P2} and ar(P1)= ar(P2)= Span(1,2,3,r31,r32).

iii) On the set of nodes X we have a partition:

On the set of nodes X we have a partition: X=XWS ⊔XTS⊔XBF⊔XMP⊔XIP where:
XWP is a set of workstations for the primary components;
XTS is a set of transport systems for material components;
XBS is a set of collection buffers for material components;
XMP is a set of material ports;
XIP is a set of information ports.

In other words, the set of objects X is the disjunctive union of three subsets of objects.

This means that X is the coproduct of a discrete diagram consisting of five nodes. This

discrete diagram is reflected in the graph of the sketch as in Figure 21. In the sketch of

x 




x

Figure 19

Public D3.3. Design method for the Factory of the Future

 Page 25

the model the disjoint union  is the colimit of a discrete diagram (cocone), Discrete(x1,

…, xn)=(x1 … xn).

This constraint are imposed by the predicate P3(n, n1, n2, n3 n4, n5)=|CoLim(Discrete(n1,

n2, n3 n4, n5)|=|n| with the graph signature ar:P3(n, n1, n2, n3 n4,

n5)→Inclusion(6,Discrete(1,2,3,4,5)) where ar(n)=6, ar(n1)=1, ar(n2)=2, ar(n3)=3,

ar(n4)=4, ar(n5)=5. We have denoted with Inclusion(x,Discrete(x,x1,x2,x3,x4,x5)) the

graph in Figure 20, where 1, 2 , 3, 4, 5 are inclusion functions. We will mark this

condition with the label [DisjointUnion5]. To map this graph signature to the graph of the

sketch we will construct a diagram D2 defined by the functor:

d2: Inclusion(6,Discrete(1,2,3,4,5))→Inclusion(x,Discrete(xws,xts,xbf,xmp,xip)) where:

ar(6)=x, ar(1)=x1, ar(2)=x2, ar(3)=x3, ar(4)=x4, ar(5)=x5.

iv) =WSMP⊔MPWS⊔BFMP⊔MPBFTSMPMPTS ⊔IPWSIPTSIPBF .

In the graph of the MLMP sketch we will have to include the following elements (Figure

22.) in order to be able to condition  to be the coproduct of the WSMP, MPWS, BFMP,

MPBF, TSMP, MPTS, IPWS, IPTS, IPBF sets.
This constraint is similar to the previous one and are imposed by the predicate P4(n, n1,
n2, n3 , n4, n5, n6, n7 , n8, n9)=|CoLim(Discrete(n1, n2, n3 , n4, n5, n6, n7 , n8, n9)|=|n|
with the graph signature ar:P4(n, n1, n2, n3 , n4, n5, n6, n7 , n8,
n9)→Inclusion(10,Discrete(1,2,3,4,5,6,7,8,9)) where ar(n)=10, ar(n1)=1, ar(n2)=2,

ar(n3)=3, ar(n4)=4, ar(n5)=5, ar(n6)=6, ar(n7)=7, ar(n8)=8, ar(n9)=9. We will mark this

condition with the label [DisjointUnion9]. To map this graph signature to the graph of the

sketch we will construct a diagram D3 defined by the functor:

d3:Inclusion(10,Discrete(1,2,3,4,5,6,7,8,9))→Inclusion(,Discrete(wsmp, mpws, tsmp,
mpts, bfmp, mpbf, ipws, ipts ,ipbf)) where:

ar(10)= , ar(1)= wsmp, ar(2)= mpws, ar(3)= tsmp, ar(4)= mpts, ar(5)= bfmp, ar(6)=mpbf,
ar(7)=ipws, ar(8)=ipts , ar(9)=ipbf .

 x

 x1 x3

1

 x2

Figure 20

 x4 x5


2
 

3
 

4
 

5

 x

 xws xbf

ws

 xts

Figure 21

 xmp xip


ts
 

bf
 

mp
 

ip

Public D3.3. Design method for the Factory of the Future

 Page 26

v) XTS = XAVG⊔XCBP⊔XMAN where

XAVG is a set of Autonomous Guided Vehicles

XCBP is a set of conveyors, belts, pipelines

XMAN is a set of manipulators

This constraint is similar to the previous one and are imposed by the predicate

P5(n, n1, n2, n3)=|CoLim(Discrete(n1, n2, n3)|=|n| with the graph signature ar(P5(n, n1,
n2, n3))=Inclusion(4,Discrete(1,2,3)) where ar(n)=4, ar(n1)=1, ar(n2)=2, ar(n3)=3. We

will mark this condition with the label [DisjointUnion3]. To map this graph signature to

the graph of the sketch we will construct a diagram D4 defined by the functor:

d4: Inclusion(4,Discrete(1,2,3))→ Inclusion(xts,Discrete(xavg, xcbp, xman)) where:

ar(4)= xts, ar(1)= xavg, ar(2)= xcbp, ar(3)= xman .

The graph of the sketch will have to include the subgraph from Figure 23.

We have presented the graph in a subgraph sequence, each subgraph having its role in the

graph of the sketch. This graph can be presented in a single image as in Figure 24.

Therefore the constraints imposed on the MLMP model determine a predicate signature

diagram

=(,ar) where ={P1,P2,P3,P4,P5} and ar is a function ar:→Graph0 which maps each

predicate P to an object in the Graph category, an object that is called shape graph

arity ar(P).

Then the -sketch corresponding to the signature  is a tuple 𝓢=(𝓖, 𝓢()) where 𝓖 is the

graph in Figure 24 and 𝓢() is a family of diagram sets indexed by the set of predicates



bfmp mpbf mpws wsmp tsmp mpts ipws


bfmp

 
mpbf

 
tsmp

 
mpts

Figure 22

ipts ipbf


ipws

 
ipts

 
ipbf

 
mpws

 
wsmp

xts

xavg xman

avg man

xcbp


cbc

Figure 23

Public D3.3. Design method for the Factory of the Future

 Page 27

marked , 𝓢()={𝓢(P1),𝓢(P2),𝓢(P3),𝓢(P4),𝓢(P5)} where: 𝓢(P1)={(P1, d1:ar(P1)→𝓖)},

𝓢(P2)={(P2, d1:ar(P2)→𝓖)},

𝓢(P3)={(P3, d2:ar(P3)→𝓖)}, 𝓢(P4)={(P4, d3:ar(P4)→𝓖)},(P5)={(P5, d4:ar(P5)→𝓖)}.

A model of the sketch 𝓢=(𝓖,𝓢()) is the image of a functor M:𝓖→Set which validates

the set of predicates Set()={ Set(P1), Set(P2), Set(P3), Set(P4), Set(P5)} where Set() is

obtained from 𝓢g() as follows:

Set(P1)={(P1,M◦d1:ar(P1)→𝓖)}, Set(P2)={(P2,M◦d1:ar(P2)→𝓖)},

Set(P3)={(P3,M◦d2:ar(P3)→𝓖)},

Set(P4)={(P4,M◦d3:ar(P4)→𝓖)}, Set(P5)={(P5,M◦d4:ar(P5)→𝓖)}.

4.1.2 Behavioral syntax of MLMP

One of the key techniques in MDE for modeling the behavior of a system is the

transformation of the model. This technique is also successfully used for the automation

of other model management operations, such as code generation, model optimization,

translation from one DSML to another, simulation, etc. In the case of diagrammatic

models, the transformation of the models is based on the transformation of graphs, which



mpts

tsmp

iTP iPT

xws

xts




x 



xmp


wsmp


mpws


bfmp


mpbf


ipts

 xbf

xip


ipws


ipbf

xavg

x
cbc

xman

Figure 24




























Public D3.3. Design method for the Factory of the Future

 Page 28

is a formal approach to structural changes of graphs by applying transformation rules

[Plump2019] [Plump2010]. A graph rule, also called the production p=(L,R), is

composed of two graphs; a left graph L, a right graph R and a mechanism that specifies

the conditions and how to replace L with R.

Although, in our case, the behavioral model is not based on structural transformations of

the graph, but on changes of attribute values, we will use graph transformations because

they provide the necessary context to locate the components involved in a transformation

and to locate the critical regions that will be defined for parallel behavioral

transformations.

The double pushout (DPO) or single pushout (SPO) approaches, are transformations in

successive steps of the left graph to the right graph [Plump2010] [Plump2019]

[Ehrig2015].

We will specify the behavior of the MLMP model, with DPO graph transformations.

The transformation rules express local changes of the graphs and are therefore very

suitable to describe the local transformations of the model states, on which the description

of its behavior is based. A graph transformation rule is a formal concept that precisely

defines the model's behavior through preconditions, postconditions and transformation

steps ordered only by the causal dependence of the actions, which facilitates the

application of independent rules in an arbitrary order.

In the double-pushout (DPO) variant, a graphical production is denoted p=(LK→R)

and contains three graphs: a left graph L, a right graph R and an interface graph K

contained both in R, and in L, where the arrows represent two total monomorphisms

pL:K→L and pR:K→R. In this variant, a production p contains besides graphs L and R

and a bonding graph K, also two total graphical monomorphisms.

The application of a production p=(LK→R) to a graph G begins with the localization

of an occurrence of L in G, given by a total match monomorphism m:L→G. Then we

must construct on a graph D by deleting from G the difference between L and K, that is

D=G\(L\K). The final graph H is obtained by joining to D the difference between R and

K, that is H=D+(R\K). In order for D=G\(L\K) to become a graph in which all edges have

a source and target, a certain bonding condition must be fulfilled, which leads to a well-

defined graph D.

These graph transformations will be defined on the elements from the graph of the sketch

in Figure 24. For the MLMP model, we have only two graph transformation rules

p1==(L1

𝑙1
←K1

𝑟1
→R1) and p2==(L2

𝑙2
←K2

𝑟2
→R2) as we see in Figure 25 and Figure 26.

Figure 25. Graph transformation p1

 l1 r1

L1
R1

K1



x
ws

mpws

wsmp

x
mp







xws

mpws

xbf

wsmp

bfmp

x
mp

mpbf

x
ws



mpws

x
bf


wsmp


bfmp

x
mp



mpbf

Public D3.3. Design method for the Factory of the Future

 Page 29

Suppose we have a class of models Mod(𝓢,Set) specified declaratively by a categorical

sketch 𝓢.

We consider that on the set of models Mod(𝓢,Set) we have defined the set of endogenous

transformation rules GTS={p1,p2}. The transformation rules GTS, graphically illustrates

a possible evolution of the model states. Obviously, to specify the behavior of a model by

such transformations, after each step the obtained model must conform to the sketch 𝓢.

4.1.3 Semantics of MLMP Language

As we have seen, in principle, a static visual model is the image of a sketch 𝓢=(𝓖,𝓒(𝓖))

through a functor. In order to also define the behavior of a model it is necessary that the

graph of the sketch be enriched besides the constraints (𝓖) also with types, attributes and

behavioral rules.

An important extension of the graph 𝓖 is the introduction of a type alphabet for nodes and

a type alphabet for arcs, and assignment of types to each element of it [Ehrig2015]

[Campbell2018] [Campbell2019]. Thus it becomes a type graph. We will consider in the

following that the name of each type is identified with the name of the corresponding

element of the sketch.

Then the typing of a model M: 𝓢→Set is made by a tuple MT=(M;typeM) where typeM is

a morphism from model M to the type graph 𝓖 thus defined typeM(X)=x where XM(x)

and x is a node or arc of the graph 𝓖 of the sketch. Thus each element of a model will

have a name and a type. We observe that the metamodel types can be similarly defined

by a meta-metamodel.

The states of a model will be defined by the values of some attributes associated with the

nodes and edges of the graph of the structure of the model as well as the structure of the

model. The evolution of the model is based on the modification of the structure of the

model within the limits allowed by the constraints (𝓖) and on the modification of the

values of the attributes within the limits allowed by their type.

An attributed graph is a graph extended by attaching attributes to the nodes and edges of

a graph, so that the nodes and edges can also be characterized by the attribute values.

These attributes are represented by edges that link the nodes and arcs of the sketch graph

to the corresponding data domain [Campbell2019].

In order to be able to define the behavior of a model at the metamodel level, we will now

introduce the notions of signing a behavioral rule and signing a system of behavioral

rules.

The signature of a behavioral rule is a tuple =(L
𝑙𝑠
←K

𝑟𝑠
→R,CL,Act,CR) where:

L, K and R are attributed graphs L,K,RAGraph0, ls and rs are graph monomorphisms

ls,rsAGraph1,

Figure 26. Graph transformation p2
 l2 r2

L2
R2

K2



x
ts

mpts

tsmp

x
mp







Xts

mpts

xbf

tsmp

bfmp

x
mp

mpbf

x
ts



mpts

x
bf


tsmp


bfmp

x
mp



mpbf

Public D3.3. Design method for the Factory of the Future

 Page 30

CL=(L,arL) is a diagram predicate signature such that arL:L→AGraph0, which we call

the precondition signature.

CR=(R,arR) is a diagram predicate signature such that arR:R→AGraph0, which we call

the postcondition signature.

Act is an action signature that specifies how to transform the elements of graph L which

is the domain of action into the components of graph R which composes the codomain of

the action.

Act has the shape graph arity a tuple ar=(arL,arR), where arL(Act)=L and arR(Act)=R. To

simplify the exposure we will sometimes write an action in the form of Act(L;R). If we

consider that the elements of graph L, the nodes and arcs, are (x1,...,xm) and the elements

of graph R are (y1,...,ym) then (y1,...,ym):=Act(x1,...,xm) and therefore we will denote the

graph L with L(x1,...,xm), the graph R with R(y1,...,ym), the graph K with K(z1,...,zl) and

an action also with Act(x1,...,xm; y1,...,ym). Most of the times in applications Act is a set

of operations i:x1,...,xm→yi, i=1,…,m.

The behavioral signature  is a set of behavioral rules signatures.

To define the behavioral signatures of the MLMP language we consider the shape graphs

G1(x1, x2, x3, x4, x5, x6, x7, x8, x9) from Figure 27 and G2(x2, x3, x6, x7, x8) from Figure 28.

These shape graphs are essential for mapping the behavioral transformations to the

component elements of a model, and they must be defined to represent the local graph

structure of the model. In constructing a model we can have variable structures such as

joints and forks with a variable number of branches. In our case we have a join structure

with a variable number of inputs in the Xws component and therefore we will have to

define a variable behavioral signature. We will represent these variable graph shapes as

follows:

G1(<***x7,x2,x6,x1>, <*x7,x2>, x3, x4, <****x7,x2,x6,x1,x5>, <**x7,x2,x6>, x7, x8,x9) and

G2(<*x7,x2>, x3, <**x7,x2,x6>, x7, x8).

with significance <*x7,x2>={ x2|(x2)= x7}; <**x7,x2,x6>={ x6| x<*x7,x2> i.e. (x)=

x6};

<***x7,x2,x6,x1>= { x1| x<**x7,x2,x6> i.e.  (x1)= x} and

<****x7,x2,x6,x1,x5>={ x5| x<***x7,x2,x6,x1> i.e. (x)= x5};

The components specified with this notation will not be addressed by their name in the

implementation of the transformation, but by indirectness relative to the basic component

x7.

With this notation we can define joins with a variable number of branches and therefore

all the shape graphs required in the case of MLMP language (Figure 29 and Figure 30).

In the case of the MLMP language, the behavioral signature is ={1,2} where:

1=(L1
𝑙𝑔
←K1

𝑟𝑔
→R1,𝐶𝐿

1 ,Act1, 𝐶𝑅
1) ; 2=(L2

𝑙𝑔
←K2

𝑟𝑔
→R2,𝐶𝐿

2,Act2, 𝐶𝑅
2);

L1= R1= L2= R2= G1(<***7,2,6,1>,<*7,2>,3 ,4, <****7,2,6,1,5>,<**7,2,6>,7,8,9) ;

K1 = K2 = G2(<*7,2>,3, <**7,2,6>,7,8);

𝐶𝐿
1=(𝐿

1 ar𝐿
1);𝐿

1={P𝐿
1(1,2,<*7,3>,<***7,3,8,4>,5,6,7,<**7,3,8>,<****7,3,8,4,9>)};ar𝐿

1(

xi)=i,i=1,9;

𝐶𝑅
1=(𝑅

1 ,ar𝑅
1);𝑅

1={P𝑅
1(1,2,<*7,3>,<***7,3,8,4>,5,6,7,<**7,3,8>,<****7,3,8,4,9>)};ar𝑅

1

(xi)=i,i=1,9;

L2= R2=G1(1,2,3,4,5,6,7,8,9) ; K2 = G2(2,3,6,7,8);

𝐶𝐿
2=(𝐿

2 , ar𝐿
2); 𝐿

2={P𝐿
2(x1, x2, x3, x4, x5, x6, x7, x8,x9)} ; ar𝐿

2(xi)=i, i=1,9;

𝐶𝑅
2=(𝑅

2 , ar𝑅
2); 𝑅

2 ={ P𝑅
2(x1, x2, x3, x4, x5, x6, x7, x8,x9)}; ar𝑅

2(xi)=i, i=1,9;

Act1: (<***x7,x2,x6,x1>, <*x7,x2>, x3, x4, <****x7,x2,x6,x1,x5>, <**x7,x2,x6>, x7, x8,x9)=

Act1(<***x7,x2,x6,x1>, <*x7,x2>, x3, x4, <****x7,x2,x6,x1,x5>, <**x7,x2,x6>, x7, x8,x9);

Act2: (x1, x2, x3, x4, x5, x6, x7, x8,x9)= Act2(x1, x2, x3, x4, x5, x6, x7, x8,x9);

Public D3.3. Design method for the Factory of the Future

 Page 31

In order to map the signature of a behavioral rule to the graph 𝓖 of the sketch 𝓢, we need

a set of three diagrams DL, DK and DR defined by three functors dl, dk si dr, where dk is

the restriction of the functors dl and dr at domain K; dk=dl/K=dr/K.

In the case of the MLMP language for the signature of the rule p1 we have the diagrams

(Figure 31):

𝑑𝑙
1 : G1(<***7,2,6,1>,<*7,2>,3 ,4, <****7,2,6,1,5>,<**7,2,6>,7,8,9)→ G1(bfmp, mpws,

wsmp, mpbf, xbf, xmp, xws, xmp, xbf) defined as 𝑑𝑙
1(1)=bfmp; 𝑑𝑙

1(2)=mpws; 𝑑𝑙
1(3)=wsmp;

𝑑𝑙
1(4)=mpbf; 𝑑𝑙

1(5)=xbf; 𝑑𝑙
1(6)=xmp; 𝑑𝑙

1(7)=xws; 𝑑𝑙
1(8)=xmp; 𝑑𝑙

1(9)=xbf;

𝑑𝑟
1=𝑑𝑙

1 ; and 𝑑𝑘
1 : G2(<*7,2>,3, <**7,2,6>,7,8)→ G2(mpws, wsmp, xmp, xws, xmp) defined

as restriction 𝑑𝑘
1 =𝑑𝑙

1/K1;

And for the signature of rule p2 we have the diagrams:

𝑑𝑙
2 : G1(1,2,3,4,5,6,7,8,9)→ G1(bfmp, mpts, tsmp, mpbf, xbf, xmp, xts, xmp, xbf) defined as

𝑑𝑙
2(1)=bfmp; 𝑑𝑙

2(2)=mpts; 𝑑𝑙
2(3)=tsmp; 𝑑𝑙

2(4)=mpbf; 𝑑𝑙
2(5)=xbf; 𝑑𝑙

2(6)=xmp; 𝑑𝑙
2(7)=xts;

𝑑𝑙
2(8)=xmp; 𝑑𝑙

2(9)=xbf;

𝑑𝑟
2=𝑑𝑙

2 ; and 𝑑𝑘
2 : G2(2,3,6,7,8)→ G2(mpts, tsmp, xmp, xts, xmp) defined as restriction 𝑑𝑘

2

=𝑑𝑙
2/K2;

The diagrams are a mechanism for associating formal graph components, represented by

shape graphs to actual components in the graph of the categorical sketch.

In general, we can have more sets of diagrams and therefore we can have more behavioral

rules at the metamodel level with the same behavioral signature. In our case, each

signature of a behavioral rule generates a single behavioral rule at the sketch level. We

will denote the set of behavioral rules induced by the behavioral signature  at the sketch

level 𝓢 with (). In the case of MLMP language (Figure 30), ()={𝓢(1), 𝓢(2)} where:

𝓢(1)=(𝑑𝑙
1(L1)

𝑙𝑠
← 𝑑𝑘

1(K1)
𝑟𝑠
→ 𝑑𝑟

1(R1),{𝑃𝐿
1(𝑑𝑙

1(L1))},Act1(𝑑𝑙
1(L1); 𝑑𝑟

1(R1)), 𝑃𝑅
1(𝑑𝑟

1(R1)));

𝓢(2)=(𝑑𝑙
2(L2)

𝑙𝑠
← 𝑑𝑘

2(K2)
𝑟𝑠
→ 𝑑𝑟

2(R2),{𝑃𝐿
2(𝑑𝑙

2(L2))},Act2(𝑑𝑙
2(L2); 𝑑𝑟

2(R2)), 𝑃𝑅
2(𝑑𝑟

2(R2)));

The total morphisms ls and rs are defined as follows:

 ls(𝑑𝑘
1(n))= 𝑑𝑙

1(lg(n))  nK1 ; lr(𝑑𝑘
1(n))= 𝑑𝑟

1(rg(n))  nK1 and respectively

ls(𝑑𝑘
2(n))= 𝑑𝑙

2(lg(n))  nK2 ; lr(𝑑𝑘
2(n))= 𝑑𝑟

2(rg(n))  nK2.

To introduce the concept of behavioral model we need to first define the notion of

matching a shape graph in its image through a functor in Set.

If we have a graph 𝓖=(N, A, s, t) and a functor :𝓖→Set that associates to each node

xiN, of the graph a set of objects (xi) and to each arc rA r:xi→xj , xjN, a function

(xk):(xi)→(xj) then a matching of the graph 𝓖 in (𝓖) is a total monomorphism of

graphs m:𝓖→(𝓖).

Therefore, the image of a matching m of the graph 𝓖 in (𝓖) is a graph 𝓖m=(m(N), m(A),

m(s), m(t)) so that yim(N) xiN with yi(xi) and aim(A) riN with

ai(ri) respecting the conditions of homomorphism m(s(ri))=m(s)(m(ri)) and

m(t(ri))=m(t)(m(ri)) for all riA.

We will denote the set of graph matches 𝓖 in (𝓖) with m(,𝓖).

We can now introduce the behavioral model of the sketch 𝓢=(𝓖,𝓒(𝓖)) that we call a

behavioral model. A behavioral model consists of the set of all the behavioral

transformations induced by the signatures of behavioral rules defined as above, that is, a

behavioral signature .

A behavioral model of the sketch, 𝓢 is an application MC: 𝓖 →Set defined by two functors

ML: 𝓖→Set and MR: 𝓖→Set, which maps each node of the graph 𝓖 in sets of classes of

the type of the corresponding node and each arc of the graph 𝓖 in an appropriate function,

and the set 𝓢() of behavioral rules becomes a set of behavioral rules in Set so

Public D3.3. Design method for the Factory of the Future

 Page 32

Set()={(t) | for each t𝓢() and each match mLm(ML∘dl,L), mKm(MK∘dK,K) and

mRm(MR∘dR,R) so that, mL∘dl, mK∘dK, mR∘dR are diagrams}.

More precisely, according to this definition in a behavioral model, for any behavioral

transformation t𝓢() and for any pair of matches mLm(M𝐿
𝐶∘dL,L) and

mRm(M𝑅
𝐶∘dR,R) we have rule

(L
𝑙
←K

𝑟
→R,{P(mL∘dL∘ar(P))|PCL},Act(mL(dL(L);mR(dR(R)), {(P(mR∘dR∘ar(P))|PCR})

Set()

where l(mK (o))=mK(ls(o)),  nK1 ; r(mK (o))=mK(rs(o)),  nK1 and mL∘dl, mK∘dK,

mR∘dR are diagrams. Thus, the Set category endowed with these behavioral rules becomes

the semantic universe of the behavioral model. We will call the application MC:→Set thus

defined, behavioral model.

Thus the set of behavioral rules Set() can be built automatically for each model specified

by the sketch 𝓢. For MLMP the set of behavioral rules Set() is:

Set()={11, 12, 13, 14, 21, 22, 23, 24, 25,} where

11=((L11

𝑙
←K11

𝑟
→R11,P𝐿

1(A𝐿
11),Act(A𝐿

11; A𝑅
11),P𝑅

1(A𝑅
11)) where the following notations have

been used:

L11= R11=G1({24}, {23}, 22, 21,{B3},{P12},WS1,P11,B4); K11=G2({23}, 22,

{P12},WS1,P11);

A𝐿
11=A𝑅

11={24}, {23}, 22, 21,{B3},{P12},WS1,P11,B4; A𝐾
11={23}, 22, {P12},WS1,P11;

12=((L12

𝑙
←K12

𝑟
→R12,P𝐿

1(A𝐿
12),Act(A𝐿

12; A𝑅
12),P𝑅

1(A𝑅
12)) where the following notations have

been used:

L12= R12=G1({16}, {15}, 14, 13,{B5},{P8},WS2,P7,B6); K12=G2({15}, 14,

{P8},WS2,P7);

A𝐿
12=A𝑅

12={16}, {15}, 14, 13,{B5},{P8},WS2,P7,B6 ; A𝐾
12={15}, 14, {P8},WS2,P7);

13=((L13

𝑙
←K13

𝑟
→R13,P𝐿

1(A𝐿
13),Act(A𝐿

13; A𝑅
13),P𝑅

1(A𝑅
13)) where the following notations have

been used:

L13= R13=G1({5},{6},7,8,{B7},{P3},WS3,P4,B8); K13=G2({6},7,{P3},WS3,P4);

A𝐿
13=A𝑅

13={5},{6},7,8,{B7},{P3},WS3,P4,B8 ; A𝐾
13={6},7,{P3},WS3,P4;

In the case of the behavioral transformations 11, 12 and 13, the matching of the shape

graph in the model from Figure 9 imposes on positions 1,2,5 and 6 sets with one element

(Figure 31) because the shape graphs look like those in Figure 27 and Figure 28.

14=((L14

𝑙
←K14

𝑟
→R14,P𝐿

1(A𝐿
14),Act(A𝐿

14; A𝑅
14),P𝑅

1(A𝑅
14)) where the following notations have

been used:

L14=R14=G1({33,34},{35,36},37,38,{B9,B10},{P17,P18},WS4,P19,B11);

K14=G2({35,36},37, {P17,P18},WS4,P19);

A𝐿
14=A𝑅

14={33,34},{35,36},37,38,{B9,B10},{P17,P18},WS4,P19,B11 ;

 A𝐾
14={35,36},37, {P17,P18},WS4,P19;

In the case of the behavioral transformation 14, the matching of the shape graph in the

model from Figure 9 impose on positions 1, 2, 5 and 6 sets with two elements so that the

shape graphs look like those in Figure 29 and Figure 30.

21=((L21

𝑙
←K21

𝑟
→R21,P𝐿

2(A𝐿
21),Act(A𝐿

21; A𝑅
21),P𝑅

2(A𝑅
21)) where the following notations have

been used:

L21= R21=G1(28, 27, 26, 25,B1,P14,AVG1,P13,B3); K21=G2(27, 26, P14,AVG1,P13);

A𝐿
21=A𝑅

21=28, 27, 26, 25,B1,P14,AVG1,P13,B3; A𝐾
21=27, 26, P14,AVG1,P13;

22=((L22

𝑙
←K22

𝑟
→R22,P𝐿

2(A𝐿
22),Act(A𝐿

22; A𝑅
22),P𝑅

2(A𝑅
22)) where the following notations have

been used:

Public D3.3. Design method for the Factory of the Future

 Page 33

L22= R22=G1(1, 2, 3, 4,B2,P1,AVG2,P2,B7); K22=G2(2, 3, P1,AVG2,P2);

A𝐿
22=A𝑅

22=1, 2, 3, 4,B2,P1,AVG2,P2,B7; A𝐾
22=2, 3, P1,AVG2,P2;

23=((L23

𝑙
←K23

𝑟
→R23,P𝐿

2(A𝐿
23),Act(A𝐿

23; A𝑅
22),P𝑅

2(A𝑅
23)) where the following notations have

been used:

L23= R23=G1(20, 19, 18, 17,B4,P10,AVG3,P9,B5); K23=G2(19, 18, P10,AVG3,P9);

A𝐿
23=A𝑅

23=20, 19, 18, 17,B4,P10,AVG3,P9,B5; A𝐾
23=19, 18, P10,AVG3,P9;

24=((L24

𝑙
←K24

𝑟
→R24,P𝐿

2(A𝐿
24),Act(A𝐿

24; A𝑅
24),P𝑅

2(A𝑅
24)) where the following notations have

been used:

L24= R24=G1(9, 10, 30, 32,B8,P5,M1,P16,B10); K24=G2(10, 30, P5,M1,P16);

A𝐿
24=A𝑅

24=9, 10, 30, 32,B8,P5,M1,P16,B10; A𝐾
24=10, 30, P5,M1,P16;

25=((L25

𝑙
←K25

𝑟
→R25,P𝐿

2(A𝐿
25),Act(A𝐿

25; A𝑅
25),P𝑅

2(A𝑅
25)) where the following notations have

been used:

L25= R25=G1(12, 11, 29, 31,B6,P6,M1,P15,B9); K25=G2(11, 29, P6,M1,P15);

A𝐿
25=A𝑅

25=12, 11, 29, 31,B6,P6,M1,P15,B9; A𝐾
25=11, 29, P6,M1,P15;

x
7

x
2
 x

3

x
6
 x

8

Figure 27. Graph G1(x1, x2, x3, x4, x5, x6, x7, x8, x9)

Figure 28. Graph G2(x2, x3, x6, x7, x8)

x
7

x
2

x
5

x
3
 x

1

x
6

x
4

x
9
 x

8

x
5,2

x
7

x
2,1

 x
5,1

x
3
 x

1,1

x

6,1

x
4

x
9
 x

8

x
2,2

x
6,2

x

1,2

Figure 29. Graph G2(x2, x3, x6, x7, x8)

Figure 30. Graph G2(x2, x3, x6, x7, x8)

x
7

x
2,1

 x
3

x
6,1

x
8

x
2,2

x
6,2

Public D3.3. Design method for the Factory of the Future

 Page 34

Model transformation involves addressing two important aspects: defining

transformations and applying these transformations. In MDE, the transformation of the

models has as main objective the automatic generation of some models written in a target

language based on models written in a source language according to the transformation

rules.

Applying a transformation rule specified by a behavioral signature

=(L
𝑙𝑠
←K

𝑟𝑠
→R,CL,Act,CR) is done as follows:

- We find a total matching morphism m:L→G (Figure 31).

- The preconditions are verified, that is, the fulfillment of the predicates defined by

the CL signatures, among which is the gluing condition.

- The graph transformation defined by the cospan L
𝑙𝑠
←K

𝑟𝑠
→R is executed.

- The Act action is executed.

- The postcondition is verified, that is, the fulfillment of the predicates defined by

the CR signatures. If the postconditions are not fulfilled the rule cannot be applied

and rollback is performed.

If a transformation rule appears several times in a model then it can be applied

sequentially or in parallel several times. Also, if two different transformation rules are

independent, they can be applied simultaneously. Graphic transformation systems can be

non-deterministic, i.e. in a certain step there are several transformation rules that respect

Figure 31. Graph

Act(x1, x2, x3, x4, x5, x6, x7, x8, x9)

xws

mpws

xbf

wsmp

mpbf

x
mp

bfmp

7



5





6



9

8

𝑋𝑤𝑠
7,𝑖

𝑚𝑝𝑤𝑠
2,𝑖

𝑋𝑏𝑓
5,𝑖

𝑤𝑠𝑚𝑝
3,𝑖 𝑚𝑝

1,𝑖

𝑋𝑚𝑝
6,𝑖

𝑚𝑝𝑏𝑓
4,𝑖

𝑋𝑏𝑓
9,𝑖

𝑋𝑚𝑝
8,𝑖

B) Shape

graph

C) Metamodel

D) Model

L
1

A) Action

arL

D
L

M

m

(M, type
M

)

Public D3.3. Design method for the Factory of the Future

 Page 35

the conditions of application and one of them must be chosen or, there are several matches

and one of them must be chosen. There are several techniques for controlling these

situations.

The dynamic behavior of an MLMP model over time is accomplished by generic

algorithms that implement the behavioral transformations. The simulation begins by

initializing the system with data describing its initial state. The dynamics of the system

are accomplished by the succession of the behavioral transformations executed. The

semantics of an MLMP defines how process tokens are propagated through the arcs and

objects of a model.

In the modeling method concept the simulation of a model is based on mechanisms and

algorithms that are written in a programming language. The behavior of the model is

described by rules that specify how expressions are evaluated and commands executed.

These rules provide an operational semantic that provides a language implementation.

Public D3.3. Design method for the Factory of the Future

 Page 36

5 Conclusions

The document describes the development of a modeling method and the associated

DSML - MLMP to be used in the design of a digital factory of the future.

The first section summarizes the mathematical fundamentals of developing the modeling

language and methods. Arguments are presented, sustaining the adequacy of the chosen

mathematical instrument - category theory - for this task.

These fundamentals are used in Section 2 to formalize the description of the static and

dynamic aspects of a manufacturing process. On this basis, the development process for

a modeling method described in [Karagiannis&Kühn2002] [Bork2019] was chosen.

The elements of the MLMP - which is an essential aspect of the modelling method - are

presented together with their graphical representation in Section 3. The elements are

depicting conceptual building blocks used by professionals in the field of manufacturing

processes to design manufacturing floor plans. An example of a model built from this

elements is also provided.

Section 4 describes the development of the metamodel of the MLMP

The category theory is used to formally specify syntactic constructions of the language,

both structural and behavioral.

The developed metamodel will be used for the implementation of the design tool for the

factory of the future. Although the presented case models only the base level of the

Reference Archetecture Model for Industry 4.0 – RAMI 4.0 (Reference Architecture

Industry 4.0) [Anderl2016]. The final design tool will support multiple levels of the

architecture specification.

They are at least two ways of supporting multiple views/ abstraction levels in the

modeling and design tools. One is to use a unique model including all necessary elements

and all their attributes of the modeled universe. Each view is then filtering the specific

elements.

The other way is to have distinct models for each view and consequently distinct

modelling languages and modelling tools for each view. The aggregating tool should

allow the coupling of the models trough defined interfaces and the simulation of the whole

universe.

The decision will be taken in the tool design phase. The present document will be then

supplemented with the description of additional elements and attributes or of the

additional languages and model interconnecting interfaces.

Public D3.3. Design method for the Factory of the Future

 Page 37

6 References

1. [Karagiannis2016] D. Karagiannis, H.C. Mayr, J. Mylopoulos, Domain-Specific

Conceptual Modeling Concepts, Methods and Tools. Springer International

Publishing Switzerland (2016)

2. [Bork2020] Dominik Bork ∗, Dimitris Karagiannis, Benedikt Pittl, A survey of

modeling language specification techniques, Information Systems 87 (2020) 101425,

journal homepage: www.elsevier.com/locate/is

3. [Fowler2010] M. Fowler, R. Parsons, Domain Specific Languages, 1st ed. Addison-

Wesley Longman, Amsterdam, 2010.

4. [Mironescu2019] Mironescu I.D. (2019) An ADOxx Based Environment for Problem

Based Learning in Manufacturing Systems Design, 9th International Conference on

Manufacturing Science and Education – MSE 2019 “Trends in New Industrial

Revolution”, MATEC Web Conf., Vol. 290, 2019, DOI:
 https://doi.org/10.1051/matecconf/201929014003

5. [Bork2019] D. Bork, R.A. Buchman, D. Karagiannis, M. Lee, E.T. Miron, An Open

Platform for Modeling Method Conceptualization: The OMiLAB Digital Ecosystem,

Communications of the Association for Information Systems, forthcoming,

http://eprints.cs.univie.ac.at/5462/1/CAIS-OMiLAB-final-withFront.pdf (2019)

6. [Craciunean2018] D.C. Crăciunean, D. Karagiannis, Categorical Modeling Method

of Intelligent WorkFlow. In: Groza A., Prasath R. (eds) Mining Intelligence and

Knowledge Exploration. MIKE Lecture Notes in Computer Science, vol 11308.

Springer, Cham (2018).

7. [Craciunean2019]D.C. Crăciunean, Categorical Grammars for Processes Modeling,

International Journal of Advanced Computer Science and Applications(IJACSA),

10(1), (2019)

8. [Karagiannis&Kühn2002] Karagiannis D., Kühn H. (2002) Metamodelling

Platforms. In: Bauknecht K., Tjoa A.M., Quirchmayr G. (eds) E-Commerce and Web

Technologies. EC-Web 2002. Lecture Notes in Computer Science, vol 2455.

Springer, Berlin, Heidelberg

9. [Barr2012] Michael Barr And Charles Wells, Category Theory For Computing

Science- Reprints in Theory and Applications of Categories, No. 22, 2012.

10. [Diskin2012] Zinovy Diskin, Tom Maibaum- Category Theory and Model-Driven

Engineering: From Formal Semantics to Design Patterns and Beyond, ACCAT 2012

11. [Wolter2015] Uwe Wolter, Zinovy Diskin, The Next Hundred Diagrammatic

Specification Techniques, A Gentle Introduction to Generalized Sketches, 02

September 2015 : https://www.researchgate.net/publication/253963677,

12. [Plump2019] D. Plump, ‘Computing by graph transformation: 2018/19’, Department

of Computer Science, University of York, UK, Lecture Slides, 2019.

13. [Campbell2019] G. Campbell, B. Courtehoute and D. Plump, ‘Linear-time graph

algorithms in GP2’, Department of Computer Science, University of

York, UK, Submitted for publication, 2019. [Online]. Available:

https://cdn.gjcampbell.co.uk/2019/Linear-Time-GP2-Preprint.pdf.

14. [Campbell2018] G. Campbell, ‘Algebraic graph transformation: A crash course’,

Department of Computer Science, University of York, UK, Tech. Rep., 2018.

[Online]. Available: https://cdn.gjcampbell.co.uk/2018/Graph-Transformation.pdf.

[Hristakiev2018] I. Hristakiev, ‘Confluence analysis for a graph programming

language’, PhD thesis, Department of Computer Science, University of York, UK,

2018. [Online]. Available: https://etheses.whiterose.ac.uk/20255/.

https://doi.org/10.1051/matecconf/201929014003
http://eprints.cs.univie.ac.at/5462/1/CAIS-OMiLAB-final-withFront.pdf
https://www.researchgate.net/publication/253963677
https://etheses.whiterose.ac.uk/20255/

Public D3.3. Design method for the Factory of the Future

 Page 38

15. [Plump2010] D. Plump, ‘Checking graph-transformation systems for confluence’,

ECEASST, vol. 26, 2010. DOI: 10.14279/tuj.eceasst.26.367.

16. [Ehrig2015] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, Frank Hermann, Graph and

Model Transformation General Framework and Applications, Springer-Verlag Berlin

Heidelberg 2015

17. [Milner2009] R. Milner, The Space and Motion of Communicating Agents,

Cambridge University Press, (2009)

18. [Anderl2016] Anderl R. (2016). Industrie 4.0 - Digital Transformation in Product

Engineering and Production. Conference: 21st International Seminar on High

Technology - Smart Products and Smart Production, At Piracicaba (SP), Brazil

Public D3.3. Design method for the Factory of the Future

 Page 39

7 Annex A. List of Abbreviations

DSL Domain Specific Language

DSML Domain Specific Modeling Language

FOL First Order Logic

MDE Model-Driven Engineering

MLMP Modeling Language for Manufacturing Processes

DPO Double PushOut

SPO Single PushOut

BPMN Business Process Model and Notation

EPC Event-driven Process Chain

UML Unified Modeling Language

